
Hi Pupil Here's Your answer :::
➡➡➡➡➡➡➡➡➡➡➡➡➡
An object moving with constant speed can be accelerated if direction of motion changes. For example, an object moving with a constant speed in a circular path has an acceleration because its direction of motion changes continuously.
⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅
Hope this Helps . . . . . . . . .
Answer:
The tangential speed of the tack is 6.988 meters per second.
Explanation:
The tangential speed experimented by the tack (
), measured in meters per second, is equal to the product of the angular speed of the wheel (
), measured in radians per second, and the distance of the tack respect to the rotation axis (
), measured in meters, length that coincides with the radius of the tire. First, we convert the angular speed of the wheel from revolutions per second to radians per second:


Then, the tangential speed of the tack is: (
,
)


The tangential speed of the tack is 6.988 meters per second.
Answer:
2.2 s
Explanation:
Using the equation for the period of a physical pendulum, T = 2π√(I/mgh) where I = moment of inertia of leg about perpendicular axis at one point = mL²/3 where m = mass of man = 67 kg and L = height of man = 1.83 m, g = acceleration due to gravity = 9.8 m/s² and h = distance of leg from center of gravity of man = L/2 (center of gravity of a cylinder)
So, T = 2π√(I/mgh)
T = 2π√(mL²/3 /mgL/2)
T = 2π√(2L/3g)
substituting the values of the variables into the equation, we have
T = 2π√(2L/3g)
T = 2π√(2 × 1.83 m/(3 × 9.8 m/s² ))
T = 2π√(3.66 m/(29.4 m/s² ))
T = 2π√(0.1245 s² ))
T = 2π(0.353 s)
T = 2.22 s
T ≅ 2.2 s
So, the period of the man's leg is 2.2 s
The answer is:
Both the distance traveled in a given time and the magnitude of the acceleration at a given instant
Hope I Helped!