Answer : B) The cow pulls back on the girl.
From newton’s third law we know that every action has a reaction force pushing back. So when the girl pulls on a cow, the cow is pulling back on her.
Answer:
the velocity of the bullet-wood system after the collision is 2.48 m/s
Explanation:
Given;
mass of the bullet, m₀ = 20 g = 0.02 kg
velocity of the bullet, v₀ = 250 m/s
mass of the wood, m₁ = 2 kg
velocity of the wood, v₁ = 0
Let the velocity of the bullet-wood system after collision = v
Apply the principle of conservation of linear momentum to calculate the final velocity of the system;
Initial momentum = final momentum
m₀v₀ + m₁v₁ = v(m₀ + m₁)
0.02 x 250 + 2 x 0 = v(2 + 0.02)
5 + 0 = v(2.02)
5 = 2.02v
v = 5/2.02
v = 2.48 m/s
Therefore, the velocity of the bullet-wood system after the collision is 2.48 m/s
Answer;
the potential difference
The magnitude of the electric current is directly proportional to the potential difference of the electric field
Explanation;
An electric current results from the collective movement of free charges under the effect of an electric field. An electric field exists and can be observed in the space around a single charge or a number of charges.
Electric fields cause charges to move. It stands to reason that an electric field applied to some material will cause currents to flow in that material. In other words, the current density is directly proportional to the electric field. The constant of proportionality σ is called the material’s conductivity.
Answer:
The carriage has the energy, W = 2469.6 J
Explanation:
Given data,
The height of the hill, h = 21 m
The carriage with the baby weighs, m = 12 kg
The energy possessed by the body due to its position is the potential energy,
<em>W = P.E = mgh joules</em>
Substituting the values,
W = 12 x 9.8 x 21
= 2469.6 J
Hence, the carriage has the energy, W = 2469.6 J
A covalent bond is considered covalent