Answer:
shown in the attachment
Explanation:
The detailed step by step and necessary mathematical application is as shown in the attachment.
Answer:

Explanation:
Here at thermal equilibrium we can say that thermal energy given by Hot coffee is equal to the thermal energy absorbed by ice cubes
So here we have

now since ice cubes are added into coffee when it is at melting temperature
So here we can say that final temperature of coffee is T degree C
Now we have

here we have

L = 333 kJ/kg = 333 J/g[/tex]



now we have




Convection Current
This happens when there is a noteworthy contrast in temperature between two sections of a liquid. At the point when this temperature distinction exists, hot liquids rise and cool liquids sink, and after that streams, or developments, are made in the liquid
Answer:
(a). The reactive power is 799.99 KVAR.
(c). The reactive power of a capacitor to be connected across the load to raise the power factor to 0.95 is 790.05 KVAR.
Explanation:
Given that,
Power factor = 0.6
Power = 600 kVA
(a). We need to calculate the reactive power
Using formula of reactive power
...(I)
We need to calculate the 
Using formula of 

Put the value into the formula


Put the value of Φ in equation (I)


(b). We draw the power triangle
(c). We need to calculate the reactive power of a capacitor to be connected across the load to raise the power factor to 0.95
Using formula of reactive power


We need to calculate the difference between Q and Q'

Put the value into the formula


Hence, (a). The reactive power is 799.99 KVAR.
(c). The reactive power of a capacitor to be connected across the load to raise the power factor to 0.95 is 790.05 KVAR.