Answer:
The distance travel before stopping is 1.84 m
Explanation:
Given :
coefficient of kinetic friction 
Zak's speed 
Gravitational acceleration

Work done by frictional force is given by,




m
Therefore, the distance travel before stopping is 1.84 m
Planetary Nebula are the outer layers of a star that are lost when the star changes from a red giant to a white dwarf. A star is a luminous globe of gas producing its own heat and light by nuclear reactions (nuclear fusion). They are born from nebulae and consist mostly of hydrogen and helium gas.
Is this what you needed?
It's called the periodic table because it arranges the elements the into repeating sets known as periods. this is defined by the <span>covalence of an element and the number of electrons i has in its outermost shell. I feel the the Best answer would be B. sorry if im wrong but i hope i helped :)</span>
The equation to be used here is the trajectory of a projectile as written below:
y = xtanθ +/- gx²/2v²(cosθ)²
where
y is the vertical distance
x is the horizontal distance
θ is the angle of trajectory or launch angle
g is 9.81 m/s²
v is the initial velcity
Since the angle is below horizontal, let's use the minus equation. Substituting the values:
- 0.8 m = xtan15° - (9.81 m/s²)x²/2(4.8 m/s)²(cos15°)²
Solving for x,
x = 2.549 m
However, we only take half of this distance because it was specified that the distance asked before bouncing. Hence, the horizontal distance is equal to 1.27 m.