Answer:
4.21 g of AgCl
3.06 g of BaCl₂ will be needed to complete the reaction
Explanation:
The first step is to determine the reaction.
Reactants: BaCl₂ and AgNO₃
The products will be the silver chloride (AgCl) and the Ba(NO₃)₂
The reaction is: BaCl₂(aq) + 2AgNO₃(aq) → 2AgCl(s) ↓ + Ba(NO₃)₂ (aq)
We determine the silver nitrate moles: 5 g . 1mol / 169.87 g = 0.0294 moles. Now, according to stoichiometry, we know that ratio is 2:2-
2 moles of nitrate can produce 2 moles of chloride, so the 0.0294 moles of silver nitrate, will produce the same amount of chloride.
We convert the moles to mass → 143.32 g / mol . 0.0294 mol = 4.21 g of AgCl.
Now, we consider the BaCl₂.
2 moles of nitrate can react to 1 mol of barium chloride
Then, 0.0294 moles of silver nitrate will react to (0.0294 . 1) /2 = 0.0147 moles. We convert the moles to mass:
0.0147 mol . 208.23 g /1mol = 3.06 g of BaCl₂

<span>2 NaOH(aq)+ 2 Al(s)+ 2 H</span>₂<span>O → 2 NaAlO</span>₂<span>(aq)+ 3 H</span>₂<span>(g)
</span> 2mol : 2mol : 3mol
2,14mol : 1,89mol : 2,835mol
remains completely consumed
2,14-1,89=0,25mol
A) Al
B)

C)
Answer:
it is less dense than oxygen gas.
Explanation:
Hydrogen is the simplest chemical element that exists. The symbol for the chemical element Hydrogen is "H" and it is a colourless, tasteless, odorless, and highly flammable gas.
Hydrogen is a chemical element found in group (1) of the periodic table and as such it has one (1) electrons in its outermost shell. Therefore, Hydrogen has an atomic number of one (1) and a single valence electrons because it has only one proton and one electron in its nucleus.
In Chemistry, the properties of a chemical element that can be observed and measured without changing its chemical nature is known as a physical property. It includes density, color, freezing point, opacity, smell, melting point, viscosity, etc.
Hence, the statement which describes a physical property of hydrogen is that it is less dense (density) than oxygen gas.
Answer:
A reaction in which the entropy of the system decreases can be spontaneous only if it is exothermic.
Explanation:
The spontaneity of a reaction depends on the Gibbs free energy(ΔG).
- If ΔG < 0, the reaction is spontaneous.
- If ΔG > 0, the reaction is nonspontaneous.
ΔG is related to the enthalpy (ΔH) and the entropy (ΔS) through the following expression:
ΔG = ΔH - T.ΔS
where,
T is the absolute temperature (always positive)
Regarding the exchange of heat:
- If ΔH < 0, the reaction is exothermic.
- If ΔH > 0, the reaction is endothermic.
<em>Which statement is true? </em>
<em>A reaction in which the entropy of the system decreases can be spontaneous only if it is exothermic. </em>TRUE. If ΔS < 0, the term -T.ΔS > 0. ΔG can be negative only if ΔH is negative.
<em>A reaction in which the entropy of the system increases can be spontaneous only if it is endothermic.</em> FALSE. If ΔS > 0, the term -T.ΔS < 0. ΔG can be negative if ΔH is negative.
<em>A reaction in which the entropy of the system decreases can be spontaneous only if it is endothermic.</em> FALSE. If ΔS < 0, the term -T.ΔS > 0. ΔG cannot be negative if ΔH is positive.
<em>A reaction in which the entropy of the system increases can be spontaneous only if it is exothermic.</em> FALSE. If ΔS > 0, the term -T.ΔS < 0. ΔG can be negative even if ΔH is positive, as long as |T.ΔS| > |ΔH|.
1 ) Cobalt(II) nitrate react with nitrate zinc(II) to produce cobalt(III)-zinc oxide, nitrogen dioxide and oxygen
2Co(NO3)2 + Zn(NO3)2 → Co2ZnO4 + 6NO2 + O2
2) Calcium hydroxide react with phosphoric acid to produce calcium, hydrogen phosphate and water
Ca(OH)2 + H3PO4 → CaHPO4 + 2H2O
3) Copper(II) dichromate will react with Iron(III) arsenate to form Copper(II) Arsenate and Iron(III) dichromate
3Cr2CuO7 + 2AsFeO4 → Cu3(AsO4)2 + Fe2(Cr2O7)3
Reaction Type
: Double Displacement
4) aluminium hydroxide and hydrochloric acid react to form aluminium chloride and water
Al(OH)3 + 3HCl → AlCl3 + 3H2O