1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ozzi
3 years ago
5

Why is it hard to breath on top of a mountain?

Physics
1 answer:
stiks02 [169]3 years ago
3 0
Hello there.

Question: <span>Why is it hard to breath on top of a mountain?

Answer: It is due to high altitude. There is a much lower air pressure which makes it difficult to breath.Also the percentage of oxygen in the air decreases.

In short, Your answer is due to low air pressure.

Hope This Helps You!
Good Luck Studying ^-^</span>
You might be interested in
Two charges, each of 2.9 microC are placed at two corners of a square 50cm on a side, If the charges are on one side of the squa
anyanavicka [17]

Answer:

The magnitude of the electric field and direction of electric field are 146.03\times10^{3}\ N/C and 75.36°.

Explanation:

Given that,

First charge q_{1}= 2.9\mu C

Second chargeq_{2}= 2.9\mu C

Distance between two corners r= 50 cm

We need to calculate the electric field due to other charges at one corner

For E₁

Using formula of electric field

E_{1}=\dfrac{kq}{r'^2}

Put the value into the formula

E_{1}=\dfrac{9\times10^{9}\times2.9\times10^{-6}}{(50\sqrt{2}\times10^{-2})^2}

E_{1}=52200=52.2\times10^{3}\ N/C

For E₂,

Using formula of electric field

E_{1}=\dfrac{kq}{r^2}

Put the value into the formula

E_{2}=\dfrac{9\times10^{9}\times2.9\times10^{-6}}{(50\times10^{-2})^2}

E_{2}=104400=104.4\times10^{3}\ N/C

We need to calculate the horizontal electric field

E_{x}=E_{1}\cos\theta

E_{x}=52.2\times10^{3}\times\cos45

E_{x}=36910.97=36.9\times10^{3}\ N/C

We need to calculate the vertical electric field

E_{y}=E_{2}+E_{1}\sin\theta

E_{y}=104.4\times10^{3}+52.2\times10^{3}\sin45

E_{y}=141310.97=141.3\times10^{3}\ N/C

We need to calculate the net electric field

E_{net}=\sqrt{E_{x}^2+E_{y}^2}

Put the value into the formula

E_{net}=\sqrt{(36.9\times10^{3})^2+(141.3\times10^{3})^2}

E_{net}=146038.69\ N/C

E_{net}=146.03\times10^{3}\ N/C

We need to calculate the direction of electric field

Using formula of direction

\tan\theta=\dfrac{141.3\times10^{3}}{36.9\times10^{3}}

\theta=\tan^{-1}(\dfrac{141.3\times10^{3}}{36.9\times10^{3}})

\theta=75.36^{\circ}

Hence, The magnitude of the electric field and direction of electric field are 146.03\times10^{3}\ N/C and 75.36°.

4 0
3 years ago
Apply the concept of density to explain why oil floats on water.
Sauron [17]
Anything less dense than water will float, like oil. Anything more dense than water will sink, like rock.
6 0
3 years ago
a mass of 0.75 kg is attached to a spring and placed on a horizontal surface. the spring has a spring constant of 180 N/m, and t
Artemon [7]

Answer:

6.57 m/s

Explanation:

First use Hook's Law to determine the F the compressed spring acts on the mass. Hook's Law F=kx; F=force, k=stiffnes of spring (or spring constant), x=displacement

F=kx; F=180(.3) = 54 N

Next from Newton's second law find the acceleration of the mass.

Newton's .2nd law F=ma; a=F/m ; a=54/.75 = 72m/s²

Now use the kinematic equation for velocity (or speed)

v₂²= v₀² + 2a(x₂-x₀); v₂=final velocity; v₀=initial velocity; a=acceleration; x₂=final displacement; x₀=initial displacment.

v₀=0, since the mass is at rest before we release it

a=72 m/s² (from above)

x₀=0 as the start position already compressed

x₂=0.3m (this puts the spring back to it's natural length)

v₂²= 0 + 2(72)(0.3) = 43.2 m²/s²

v₂=\sqrt{43.2)\\ = 6.57 m/s

5 0
3 years ago
Which of the following could be classified as a problem that could be answered with a technological design?
loris [4]
I think the answer is 4) All of the above!! :)
4 0
3 years ago
The electric potential at the surface of a charged conductor _______.
frez [133]

Answer:

The electric potential at the surface of a charged conductor<u> is always such that the potential is zero at all points inside the conductor.</u>

Explanation:

Each point on the surface of a balanced charged conductor has the same electrical potential.

The surface on any charged conductor in electrostatic equilibrium is an equipotential surface. Since the electric field is equal to zero inside the conductor, the electric potential at any point inside and on the surface is equivalent to its value.

6 0
2 years ago
Other questions:
  • The two populations of stars in our galaxy are actually quite similar in many of their characteristics. True False
    12·1 answer
  • Why are men typically less stable on their feet than women
    8·2 answers
  • What is the gravitational potential energy of a 150 kg object suspended 5m above the Earth's surface
    13·1 answer
  • 5. What is the percent composition of sulfur in H2SO4?
    5·2 answers
  • To understand the concept of intensity; the relationship between the power of the source and the intensity of the wave; and the
    11·1 answer
  • To accelerate, an object must *
    7·1 answer
  • A balky cow is leaving the barn as you try harder and harder to push her back in. In coordinates with the origin at the barn doo
    10·1 answer
  • Using the Particle Theory, explain why liquids are less compressible than gases.
    10·1 answer
  • If the same total travel at the speed of 0.05 m/s for 40 seconds, how far would it have gone?
    10·1 answer
  • How long will it take for a car at rest to accelerate at 7m/s^2 to a speed of 45 m/s
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!