To solve this problem we will apply the principle of conservation of energy and the definition of kinematic energy as half the product between mass and squared velocity. So,


Here,
m = Mass
V = Velocity
Replacing,


Therefore the final kinetic energy of the two car system is 72.6kJ
Answer:
The value is 
Explanation:
From the question we are told that
The molar mass of hydrazine is 
The initial temperature is 
The final temperature is 
The specific heat capacity is ![c_h = 0.099 [kJ/(mol K)] = 0.099 *10^3 J/(mol/K)](https://tex.z-dn.net/?f=c_h%20%20%3D%20%200.099%20%5BkJ%2F%28mol%20K%29%5D%20%3D%200.099%20%2A10%5E3%20J%2F%28mol%2FK%29)
The power available is 
The mass of the fuel is 
Generally the number of moles of hydrazine present is

=> 
=> 
Generally the quantity of heat energy needed is mathematically represented as
=>
=>
Generally the time taken is mathematically represented as

=> 
=> t = 2480505.6377 s
Converting to hours

=> 
Answer:
1 Newton
Explanation:
F=9*10^9*q0q1/r^2]]
F=9*10^9*(q0q1)/ r^2
r=3cm
F=4N
F=9*10^9*(q0q1)/3^2
4=9*10^9*(q0q1)/9
4=10^9 q0q1
q0q1=4/10^9
q0q1=4*10^-9
To calculate the force between the forces at a distance of 6 cm
F=9*10^9*(q0q1)/ r^2
=9*10^9*(4*10^-9)/6^2
=9*10^9*(4*10^-9)/36
=10^9*4*10^-9/4
=10^9*10^-9
=1 Newton
The big bang is a theory of our universe and many others along with making our solar system. Meanwhile, in other universes have are solar system as well that is why we see stars at night because the sun and it's rays are so bright during the day it blocks them out.
The <u>frequency</u> of emitted light is directly proportional to the energy between the two orbits and this determines the color of the light.
<h3>What is light?</h3>
Light can be defined as a form of electromagnetic waves that does not require any medium for its propagation. This ultimately implies that, light is a form of wave that is generally referred to as a visual signal because it can be seen with the eyes.
According to the model of light wave, the <u>frequency</u> of emitted light is directly proportional to the energy between the two orbits and this determines the color of the light.
<em>In conlcusion, the </em><u><em>frequency</em></u><em> of emitted </em><em>light</em><em> is highly dependent on the </em><em>energy</em><em> between the two (2) </em><em>orbits</em><em>.</em>
Read more on energy here: brainly.com/question/1242059