Answer:
the correct answer is A
Explanation:
In an Einstein-type analysis, the photon is absorbed, it loses all its energy, therefore the electron must receive all or none of the energy of the incident photon. In a type of inelastic shock.
Let's analyze the different answers
A) true. In photon it is completely absorbed or passes without interaction
B) False. The photon must change energy, but in this case there is no absorption of the photon
C) False. In the insistent analyzes, the quantization of the electron in discrete states is not mentioned.
Therefore the correct answer is A
Elastic potential energy is kind of like pulling on something and then letting it go, with rubber bands, or a bow, or a slingshot, something with elastic properties.
Gravitational potential energy has to do with how high something is, and has to do with earth’s gravitational pull.
Density = (mass) / (volume)
4,000 kg/m³ = (mass) / (0.09 m³)
Multiply each side
by 0.09 m³ : (4,000 kg/m³) x (0.09 m³) = mass
mass = 360 kg .
Force of gravity = (mass) x (acceleration of gravity)
= (360 kg) x (9.8 m/s²)
= (360 x 9.8) kg-m/s²
= 3,528 newtons .
That's the force of gravity on this block, and it doesn't matter
what else is around it. It could be in a box on the shelf or at
the bottom of a swimming pool . . . it's weight is 3,528 newtons
(about 793.7 pounds).
Now, it won't seem that heavy when it's in the water, because
there's another force acting on it in the upward direction, against
gravity. That's the buoyant force due to the displaced water.
The block is displacing 0.09 m³ of water. Water has 1,000 kg of
mass in a m³, so the block displaces 90 kg of water. The weight
of that water is (90) x (9.8) = 882 newtons (about 198.4 pounds),
and that force tries to hold the block up, against gravity.
So while it's in the water, the block seems to weigh
(3,528 - 882) = 2,646 newtons (about 595.2 pounds) .
But again ... it's not correct to call that the "force of gravity acting
on the block in water". The force of gravity doesn't change, but
there's another force, working against gravity, in the water.
<h3>16.</h3>
Your answer is correct.
___
<h3>17.</h3>
The fractional change in resistance is equal to the given temperature coefficient multiplied by the change in temperature.
R = R₀×(1 + α×ΔT)
R = (10.0 Ω)×(1 + 0.004×(65 -20)) = 11.8 Ω
Answer:
Impulse of force = -80 Ns
Explanation:
<u>Given the following data;</u>
Mass = 50kg
Initial velocity = 1.6m/s
Since she glides to a stop, her final velocity equals to zero (0).
Now, we would find the change in velocity.
Substituting into the equation above;
Change in velocity = 0 - 1.6 = 1.6m/s
Substituting into the equation, we have;
<em>Impulse of force = -80 Ns</em>
<em>Therefore, the impulse of the force that stops her is -80 Newton-seconds and it has a negative value because it is working in an opposite direction, thus, bringing her to a stop. </em>