The descriptive term applied to the type of diene represented by 2,4-hexadiene is conjugated diene.
Dienes are compounds which contains two double bonds. These dienes can be non conjugated or conjugated.
Conjugated diene are those compound which have two double bonds joined by a single σ bond. Conjugated dienes can also be called 1,3-diene. To know if diene is conjugated or non conjugated, sp³ hybridization is to b checked and the number of double bonds and single sigma bond is checked.
Conjugated dienes are found in many different molecules. 2,4-hexadiene is a conjugated diene with two carbon-carbon double bonds that are separated by one sigma bond.
The stabilization of dienes by conjugation is better than the aromatic stabilization. Conjugated dienes are more stable than non conjugated or cumulative diene because it has higher electron density of molecules delocalized.
To learn more about conjugated dienes,
brainly.com/question/24261651
#SPJ4
Answer:
The average kinetic energy of the gas particles is greater in container B because it has a higher temperature.
Explanation:
<em>The correct option would be that the average kinetic energy of the gas particles is greater in container B because it has a higher temperature.</em>
<u>According to the kinetic theory of matter, the temperate of a substance is a measure of the average kinetic energy of the molecules of substance. In other words, the higher the temperature of a substance, the higher the average kinetic energy of the molecules of the substance.</u>
In the illustration, the gas in container B showed a higher temperature than that of container A as indicated on the thermometer, it thus means that the average kinetic energy of the molecules of gas B is higher than those of gas A.
Note that
1 m = 3.2808 ft
Therefore
1 km = 3280.8 ft
and

Answer: 1.0682 x 10⁵ ft/hr
I’m going to say the answer is most likely X because memetic energy is energy being used at that moment. Because the coaster is going fastest at X we can assume that the answer is X
One way you can work out the rate of reaction is by the amount of product that is produced to time. This can also be done with heat and time.
Hope this helps! :)