Answer:
Molarity = 0.002 M
Explanation:
Given data:
Mass of calcium chloride = 0.321 g
Volume of water = 1.45 L
Molarity of solution = ?
Solution:
Molarity = number of moles / volume in litter.
We will calculate the number of moles of calcium chloride first.
Number of moles = mass/molar mass
Number of moles = 0.321 g/ 110.98 g/mol
Number of moles = 0.003 mol
Molarity:
Molarity = 0.003 mol / 1.45 L
Molarity = 0.002 M
H2SO4/H2O
H2SO4/Na2SO4
NaOH/H20
NaOH/Na2SO4
Correct answer is H2SO4/Na2SO4
Answer:
The standard change in free energy for the reaction = - 437.5 kj/mole
Explanation:
The standard change in free energy for the reaction:
4 KClO₃ (s) → 3 KClO₄(s) + KCl(s)
Given that ΔGf(KClO3(s)) = -290.9 kJ/mol;
ΔGf(KClO4(s)) = -300.4 kJ/mol;
ΔGf(KCl(s)) = -409 kJ/mol
According to Hess's law
ΔGr (Free energy change of reaction)= ∑(Product free energy - reactant free energy)
⇒ ΔGr⁰ = {3 x (-300.4) + (-409)} - {3 x (- 290.9)}
= - 901.2 - 409 + 872.7
= - 437.5 kj/mole
Answer: adding
Explanation:
Because it takes thermal energy to power it
Molality is obtained by dividing the number of moles of solute by the mass in kilogram of the solvent. None of the dimensions is dependent in temperature. On the other hand, molarity is obtained by dividing the number of moles of solute by the volume in liters of the solution. Volume is temperature dependent.