Answer:
The correct answer is "transferred; unequally shared; equally shared".
Explanation:
Ionic bonding occurs when a positively charged atom (cation) interacts with a negatively charged atom (anion). In ionic bonding, the cation transfers its electron to the anion. In polar covalent bonding, electrons are unequally shared. This means that the electrons spend more time in an atom than the other, which gives partial positive and negative charges to the atoms. On the other hand in nonpolar covalent bonding, the electrons are equally shared and no charges are created.
a substance that increases the rate of a chemical reaction without itself undergoing any permanent chemical change.
- a person or thing that precipitates an event.
A general equation for a combustion reaction would be expressed as follows:
CxHy + (x+y/2)O2 = xCO2 + y/2H2O
Propane would obviously would only have carbon and hydrogen in its structure. Assuming a complete combustion, all of the carbon atoms would go to carbon dioxide and all of the hydrogen atoms to water. To determine the empirical, we determine the number of carbon and hydrogen atoms present.
moles C = 2.461 g CO2 ( 1 mol / 44.01 g ) ( 1 mol C / 1 mol CO2 ) = 0.06 mol C
moles H = 1.442 g H2O ( 1 mol / 18.02 g ) ( 2 mol H / 1 mol H ) = 0.16 mol H
Then, we divide the smallest amount to the each mole of the atoms. We do as follows:
C = 0.06 / 0.06 = 1
H = 0.16 / 0.06 = 2.67
Then we multiply a number in order to obtain a whole number ratio between the atoms.
1 CH2.67
2 C2H5.34
3 C3H8 <-------- empirical formula
Explanation:
Metals and non-metals can be identified either by their position in the periodic table or by their properties.
he metal elements are found on the left hand side of the periodic table, and the non-metal elements are found on the right. You can imagine a zig-zag line, starting at B-Al-Si, separating metals from non-metals.
Answer:
The law of conservation of mass states that mass in an isolated system is neither created nor destroyed by chemical reactions or physical transformations. According to the law of conservation of mass, the mass of the products in a chemical reaction must equal the mass of the reactants.