Answer:
D is correct
Explanation:
because
we know that
density of lead is 11.36 g/cm3
and
density of tin is 7.31 g/cm3
so..
density of alloy by mixing 50/50
=(11.36+7.31)/2 g/cm3
=18.67/2 g/cm3
=9.33 g/cm3
Answer:
0.259 kJ/mol ≅ 0.26 kJ/mol.
Explanation:
- To solve this problem, we can use the relation:
<em>Q = m.c.ΔT,</em>
where, Q is the amount of heat absorbed by ice (Q = ??? J).
m is the mass of the ice (m = 100.0 g).
c is the specific heat of water (c of ice = 4.186 J/g.°C).
ΔT is the difference between the initial and final temperature (ΔT = final T - initial T = 21.56°C - 25.0°C = -3.44°C).
<em>∵ Q = m.c.ΔT</em>
∴ Q = (100.0 g)(4.186 J/g.°C)(-3.44°C) = -1440 J = -1.44 kJ.
<em>∵ ΔH = Q/n</em>
n = mass/molar mass = (100.0 g)/(18.0 g/mol) = 5.556 mol.
∴ ΔH = (-1.44 kJ)/(5.556 mol) = 0.259 kJ/mol ≅ 0.26 kJ/mol.
In the equation,
2Al(s) + 3Cl2(g) —> 2AlCl3(s),
the large number "3" in front of Cl2 indicates the the number of moles of Chlorine molecules needed to balance the equation.
Hope this will help you.
If you like my answer. Please mark it as brainliest And Be my follower if possible.
When a meteroid goes into the atmosphere the friction starts slowing it down and generating heat.