Answer:
Explanation:
Earthquakes are normally caused by underground rock breaking along a fault line. The seismic waves that cause the earth to shake are caused by this sudden release of energy. The plates or blocks of rock begin to move during and after the earthquake, and they continue to move until they become trapped again. As fluid near the center heats up, convection currents develop within the Earth's mantle. Particles pass more quickly as the core heats the bottom layer of mantle material, lowering its density and allowing it to rise. The convection current is started by the growing material.
Answer:
22.44°C will be the final temperature of the water.
Explanation:
Heat lost by tin will be equal to heat gained by the water

Mass of tin = 
Specific heat capacity of tin = 
Initial temperature of the tin = 
Final temperature =
=T

Mass of water= 
Specific heat capacity of water= 
Initial temperature of the water = 
Final temperature of water =
=T



On substituting all values:

we get, T = 22.44°C
22.44°C will be the final temperature of the water.
Answer:
r= 0.9949 (For 15,000)
r=0.995 (For 19,000)
Explanation:
We know that
Molecular weight of hexamethylene diamine = 116.21 g/mol
Molecular weight of adipic acid = 146.14 g/mol
Molecular weight of water = 18.016 g/mol
As we know that when adipic acid and hexamethylene diamine react then nylon 6, 6 comes out as the final product and release 2 molecule of water.
So


So
Mo= 226.32/2 =113.16 g/mol

Given that
Mn= 15,000 g/mol
So
15,000 = Xn x 113.16
Xn = 132.55
Now by using Carothers equation we know that


By calculating we get
r= 0.9949
For 19,000
19,000 = Xn x 113.16
Xn = 167.99
By calculating in same process given above we get
r=0.995
Answer:
B
Explanation:
i think with exothermic reactions heat is released
this is what i looked up
hope this helps i took chem last year and think this is what i learned
When you immerse an ionic compound<span> in </span>water<span>, the ions are attracted to the </span>water <span>molecules, each of which carries a polar charge. If the attraction between the ions and the </span>water <span>molecules </span>is<span> great enough to break the bonds holding the ions together, the compound </span>dissolves<span>. </span>