<u>Answer:</u>
<u>For a:</u> The wavelength of light is 
<u>For b:</u> The light is getting absorbed
<u>Explanation:</u>
To calculate the wavelength of light, we use Rydberg's Equation:

Where,
= Wavelength of radiation
= Rydberg's Constant = 
= Higher energy level = 7
= Lower energy level = 3
Putting the values in above equation, we get:

Hence, the wavelength of light is 
There are two ways in which electrons can transition between energy levels:
- <u>Absorption spectra:</u> This type of spectra is seen when an electron jumps from lower energy level to higher energy level. In this process, energy is absorbed.
- <u>Emission spectra:</u> This type of spectra is seen when an electron jumps from higher energy level to lower energy level. In this process, energy is released in the form of photons.
As, the electron jumps from lower energy level to higher energy level. The wavelength is getting absorbed.
Answer:
See details below
Explanation:
The balanced reaction equation is given below:
+
→
+ 
Mole fraction of CO2 to H20
= 8/10 = 
Mole ratio of C4H10 to CO2 is 2:8 = 1:4
1 mole of n-butane - 38.12 g
4 moles - ?
= 152.48g fuel consumed.
Answer:
V₂ = 2.96 L
Explanation:
Given data:
Initial volume = 2.00 L
Initial temperature = 250°C
Final volume = ?
Final temperature = 500°C
Solution:
First of all we will convert the temperature into kelvin.
250+273 = 523 k
500+273= 773 k
According to Charles's law,
V∝ T
V = KT
V₁/T₁ = V₂/T₂
V₂ = T₂V₁/T₁
V₂ = 2 L × 773 K / 523 k
V₂ = 1546 L.K / 523 k
V₂ = 2.96 L
The straight horizontal line shows us that the object is moving at a constant speed