His is a step down transformer since n(primary) is greater than n(seconcary). You relate the input voltage with the ouput voltage with the following equation:
<span>Vout = n2/n1*Vin (n2/n1 is essentially your 'transfer function' that dictates what a specified input would produce) </span>
<span>Solving the equation: </span>
<span>Vin = Vout*n1/n2 = (320V)*(600/300) = 640 V </span>
<span>This is checked by seeing if Vin is greater than Vout, which it is for a step down transformer.</span>
Answer:
Ohm's law states that the current through a conductor between two points is directly proportional to the voltage across the two points.
You should back-up your computer every few weeks (or as often as needed).
As soon as you suspect that your computer (or any other backup-able device) is too slow or "glitch-y" you should back-up your device before you lose any important files or data.
PREVENTING MALFUNCTION:
→ Always set your computer on a hard & flat surface.
→ Avoid downloading programs from unknown or non-trusted sources.
→ Avoid using your computer in a hot area.
→ Consider installing a virus/malware protection software on your computer.
Answer:
The final equilibrium T_{f} = 25.7[°C]
Explanation:
In order to solve this problem we must have a clear concept of heat transfer. Heat transfer is defined as the transmission of heat from one body that is at a higher temperature to another at a lower temperature.
That is to say for this case the heat is transferred from the iron to the water, the temperature of the water will increase, while the temperature of the iron will decrease. At the end of the process a thermal balance is found, i.e. the temperature of iron and water will be equal.
The temperature of thermal equilibrium will be T_f.
The heat absorbed by water will be equal to the heat rejected by Iron.

Heat transfer can be found by means of the following equation.

where:
Qiron = Iron heat transfer [kJ]
m = iron mass = 200 [g] = 0.2 [kg]
T_i = Initial temperature of the iron = 300 [°C]
T_f = final temperature [°C]

Cp_iron = 437 [J/kg*°C]
Cp_water = 4200 [J/kg*°C]
![0.2*437*(300-T_{f})=1*4200*(T_{f}-20)\\26220-87.4*T_{f}=4200*T_{f}-84000\\26220+84000=4200*T_{f}+87.4*T_{f}\\110220 = 4287.4*T_{f}\\T_{f}=25.7[C]](https://tex.z-dn.net/?f=0.2%2A437%2A%28300-T_%7Bf%7D%29%3D1%2A4200%2A%28T_%7Bf%7D-20%29%5C%5C26220-87.4%2AT_%7Bf%7D%3D4200%2AT_%7Bf%7D-84000%5C%5C26220%2B84000%3D4200%2AT_%7Bf%7D%2B87.4%2AT_%7Bf%7D%5C%5C110220%20%3D%204287.4%2AT_%7Bf%7D%5C%5CT_%7Bf%7D%3D25.7%5BC%5D)
Answer:
They are correct
Explanation:
According to the uncertainty principle, the uncertainty in the position of an object is directly proportional to its De Broglie wavelength.
The De Broglie wavelength of a baseball is about
, recall that the diameter of the atom is about to
. Thus, the error in simultaneously determining the position and momentum of a baseball is infinitesimally small.