Answer:
a) a = 2.35 m/s^2
Explanation:
(a) In order to calculate the magnitude of the acceleration of the ball, you use the following formula, for the position of the ball:
(1)
x: position of the ball after t seconds = 87 m
t: time = 8.6 s
a: acceleration of the ball = ?
vo: initial velocity of the ball = 0 m/s
You solve the equation (1) for a:

You replace the values of the parameters in the previous equation:

The acceleration of the ball is 2.35 m/s^2
Answer:
60.18 N
Explanation:
Given that:
The force applied on the sled = 100 N
Suppose, the angle between the sled rope and the ground = 53°
The horizontal force which acts in the horizontal direction can be expressed as:



But if the angle between the sled rope is parallel to the ground. Then, we use an angle on a straight line which is = 180°


= 100 × -1
= -100 N
Answer:
Work done, W = 6 J
Explanation:
It is given that,
Force of gravity acting on the book, weight of the book is 15 N
We need to find the work done in lifting the book straight up for a distance of 0.4 meters.
The weight of the book is acting in downward direction and the book is lifted straight up, it means angle between them is 180 degrees. Work done is given by :

So, the magnitude of work done in lifting the book is 6 joules.
Answer:
Explained below
Explanation:
A) Newton's first law of motion states that an object will remain at rest or continue in its current state of motion except it is acted upon by another force.
Now using this law, when you jump off the ground, the earth will move a tiny bit and accelerate due to the force applied by the jumping.
B) Newton's 2nd law states that the acceleration of a system is directly proportional to the net external force acting on that system, is in the same direction with it and also inversely proportional to the mass.
In this case, when one jumps, an external force is exerted on the earth and we are told it is directly proportional to the acceleration of the system which in this case it's the earth, then it means that there is some motion by the earth even though you didn't see it move.
C) Newton's third law of motion states that to every action, there is an equal and opposite reaction.
In this case the motion of the jumper will lead to an equal and opposite reaction of the earth.