Mass and distance are the two factors
Answer:
<em>d. 268 s</em>
Explanation:
<u>Constant Speed Motion</u>
An object is said to travel at constant speed if the ratio of the distance traveled by the time taken is constant.
Expressed in a simple equation, we have:

Where
v = Speed of the object
d = Distance traveled
t = Time taken to travel d.
From the equation above, we can solve for d:
d = v . t
And we can also solve it for t:

Two cars are initially separated by 5 km are approaching each other at relative speeds of 55 km/h and 12 km/h respectively. The total speed at which they are approaching is 55+12 = 67 km/h.
The time it will take for them to meet is:

t = 0.0746 hours
Converting to seconds: 0.0746*3600 = 268.56
The closest answer is d. 268 s
Answer:
3x10⁴v
Explanation:
Using
Wavelength= h/ √(2m.Ke)
880nm = 6.6E-34/√ 2.9.1E-31 x me
Ke= 6.6E-34/880nm x 18.2E -31.
5.6E-27/18.2E-31
= 3 x 10⁴ Volts
so your saying the start is 0 N and when he/she hits the ball its inertia is 3 N. if that is so m*v=
.05*3=<u>.15</u>
Answer:
2. [B] = [L]/[T] and [C] = [L]/[T]
Explanation:
I assume you mean this:
A = B² + 2B⁴/C²
Since you can't add numbers with different units (for example, you can't add seconds to meters), each term in the sum must have the same units as A.
B² = [L]²/[T]²
B = [L]/[T]
B⁴/C² = [L]²/[T]²
C²/B⁴ = [T]²/[L]²
C² = B⁴ [T]²/[L]²
C² = ([L]/[T])⁴ [T]²/[L]²
C² = [L]²/[T]²
C = [L]/[T]
Notice we ignore the 2 coefficient, which is unitless.