The weight of the box is (mass) x (gravity) = (50 kg) x (9.8m/s²) = 490 newtons.
If the box is sliding at constant speed, and not speeding up or slowing down,
that means that the horizontal forces on it add up to zero.
Since you're pushing on it with 53N in <em><u>that</u></em> direction, friction must be pulling
on it with 53N in the <u><em>other</em></u> direction.
The 53N of friction is (the weight) x (the coefficient of kinetic friction).
53N = (490N) x (coefficient).
Divide each side by 490N : Coefficient = (53N) / (490N) = 0.1082 .
Rounded to the nearest hundredth, that's <em>0.11 </em>. (choice 'd')
Answer:
Net force on the block is 32 N.
Acceleration of the object is 6.4 m/s².
Explanation:
Let the acceleration of the object be
m/s².
Given:
Mass of the block is, 
Force of pull is, 
Frictional force on the block is, 
The free body diagram of the object is shown below.
From the figure, the net force in the forward direction is given as:

Now, from Newton's second law of motion, net force is equal to the product of mass and acceleration. So,

Therefore, the acceleration of the object in the forward direction is 6.4 m/s².
Answer:
D = -4/7 = - 0.57
C = 17/7 = 2.43
Explanation:
We have the following two equations:

First, we isolate C from equation (2):

using this value of C from equation (3) in equation (1):

<u>D = - 0.57</u>
Put this value in equation (3), we get:

<u>C = 2.43</u>
Answer: Fossil fuels power the machine that shakes the tree so the apples fall to the ground
Explanation: most machines are powered by fossil fuels
Acceleration is maximum. <span>Velocity is decreasing. Acceleration is increasing</span>