Momentum is a vector quantity, and is always conserved. Whenever a collision occurs between two objects, the objects behave under the principle of conservation of momentum. Therefore, if an object moves in the direction opposite to its original direction after a collision, then this indicates that the momentum of the colliding object was greater than the object under consideration.
Answer:
3/7 ω
Explanation:
Initial momentum = final momentum
I(-ω) + (2I)(3ω) + (4I)(-ω/2) = (I + 2I + 4I) ωnet
-Iω + 6Iω - 2Iω = 7I ωnet
3Iω = 7I ωnet
ωnet = 3/7 ω
The final angular velocity will be 3/7 ω counterclockwise.
Answer:
-67,500 kgm/s
Explanation:
1300 * 20 + 1100 * (-85) = -67,500 kgm/s
Answer:
If the density of the object is high its molecular arrangement is compact while if the density is lows its molecular arrangement isnt that compact
Explanation:
Given that,
Linear speed of both disks is 5 m/s
Mass of disk 1 is 10 kg
Radius of disk 1 is 35 cm or 0.35 m
Mass of disk 2 is 3 kg
Radius of disk 2 is 7 cm or 0.07 m
(a) The angular velocity of disk 1 is :

(b) The angular velocity of disk 2 is :

(c) The moment of inertia for the two disk system is given by :

Hence, this is the required solution.