To solve this problem it is necessary to apply the concepts related to the Force from Hooke's law, the force since Newton's second law and the potential elastic energy.
Since the forces are balanced the Spring force is equal to the force of the weight that is


Where,
k = Spring constant
x = Displacement
m = Mass
g = Gravitational Acceleration
Re-arrange to find the spring constant



Just before launch the compression is 40cm, then from Potential Elastic Energy definition



Therefore the energy stored in the spring is 63.72J
Explanation:
its the minimum amount of energy required to remove the most loosely bound electron
<span>A transverse wave is one for which the direction of oscillation is perpendicular to the direction of propagation of the wave whereas, for longitudinalwaves oscillations are in the direction of propagation. Ripples in pond water move about the surface of water and they simultaneously move away from the point-0 too.</span><span>
Longitudinal waves include sound waves(vibrations in pressure, particle of displacement, and particle velocity propagated in an elastic medium) and seismic P-waves (created by earthquakes and explosions). In longitudinal waves, the displacement of the medium is parallel to the propagation of thewave.
</span>
the greater the <u>mass</u> of an object the more force is needed to cause acceleration