Answer: 0.55 m/s
Explanation:
This situation is related to projectile motion (also called parabolic motion), where the main equations are as follows:
(1)
(2)
Where:
is the horizontal displacement of the pencil
is the pencil's initial velocity
since we are told the pencil rolls <u>horizontally</u> before falling
is the time since the pencil falls until it hits the ground
is the initial height of the pencil
is the final height of the pencil (when it finally hits the ground)
is the acceleration due gravity, always acting vertically downwards
Begining with (1):
(3)
(4)
Finding
from (2):
(5)
(6)
Substituting (6) in (4):
(7)
Isolating
:
(8)
(9)
Finally:
Heat<span> capacity ( C ) </span>does change with mass<span>. However, </span>specific heat<span> is the </span>heat<span>capacity per unit </span>mass<span> ( c=Cm ). Therefore if you double the amount of </span>mass<span> in your system, you've doubled its </span>heat<span> capacity, but you've kept the </span>specific heat<span> the same. ... </span>Specific<span> gravity is another such quantity.</span>
Answer: c. 1.3 m/s^2
Explanation:
When he is at rest, is weight can be calculated as:
W = g*m
where:
m = mass of the man
g = gravitational acceleration = 9.8m/s^2
We know that at rest his weight is W = 824N, then we have:
824N = m*9.8m/s^2
824N/(9.8m/s^2) = m = 84.1 kg
Now, when the elevators moves up with an acceleration a, the acceleration that the man inside fells down is g + a.
Then the new weight is calculated as:
W = m*(g + a)
and we know that in this case:
W = 932N
g = 9.8m/s^2
m = 84.1 kg
Then we can find the value of a if we solve:
932N = 84.1kg*(9.8m/s^2 + a)
932N/84.1kg = 11.1 m/s^2 = 9.8m/s^2 + a
11.1 m/s^2 - 9.8m/s^2 = a = 1.3 m/s^2
The correct option is C