If the resistors are arranged in a shape of a square, then they are in a series type of circuit. This circuit arrangement is a non-branching, one-way flow of electrons. The total resistance in a series circuit is the summation of the individual resistances, If you place the ohmmeter (measures resistance) on two non-adjacent sides, then, you are measuring the resistance of two of the resistors.
Resistance = 2(1 kΩ) = 2 kΩ
Answer:
20 J
Explanation:
Kinetic energy is given as half of the product of mass and the square of velocity of an object:
KE = 
where m = mass = 40 kg
v = velocity = 1 m/s
Hence, Mary's kinetic energy is:
KE = 
KE = 20 * 1 = 20 J
She has a kinetic energy of 20 J.
Oh your from the other question you made I just saw it LOL.
But heres the answer click the 3 dots on the question you made or you can ask a Moderator or Administrator to remove your question with a reason.
Answer:
a) v = 2,9992 10⁸ m / s
, b) Eo = 375 V / m
, B = 1.25 10⁻⁶ T,
c) λ = 3,157 10⁻⁷ m, f = 9.50 10¹⁴ Hz
, T = 1.05 10⁻¹⁵ s
, UV
Explanation:
In this problem they give us the equation of the traveling wave
E = 375 cos [1.99 10⁷ x + 5.97 10¹⁵ t]
a) what the wave velocity
all waves must meet
v = λ f
In this case, because of an electromagnetic wave, the speed must be the speed of light.
k = 2π / λ
λ = 2π / k
λ = 2π / 1.99 10⁷
λ = 3,157 10⁻⁷ m
w = 2π f
f = w / 2 π
f = 5.97 10¹⁵ / 2π
f = 9.50 10¹⁴ Hz
the wave speed is
v = 3,157 10⁻⁷ 9.50 10¹⁴
v = 2,9992 10⁸ m / s
b) The electric field is
Eo = 375 V / m
to find the magnetic field we use
E / B = c
B = E / c
B = 375 / 2,9992 10⁸
B = 1.25 10⁻⁶ T
c) The period is
T = 1 / f
T = 1 / 9.50 10¹⁴
T = 1.05 10⁻¹⁵ s
the wavelength value is
λ = 3,157 10-7 m (109 nm / 1m) = 315.7 nm
this wavelength corresponds to the ultraviolet
Answer:

Explanation:
The magnitude of the electrical force between the two point charges is

where
k is the Coulomb's constant
is the magnitude of each charge
r = 3.00 m is the separation between the two charges
Substituting the numbers into the formula, we find
