Answer:


Explanation:
Given



See attachment
Required
Determine PCD and CPD
First, we need to calculate CPD
Since DPA is a straight line and CPA = 100;
We have that:
--- angle on a straight theorem
Substitute 100 for CPA

Subtract 100 from both sides


Next, we calculate PCD
We have that:
--alternate angle
In triangle PCD
--- angles in a triangle
Where

So, we have:


Subtract 136 from both sides


Answer:
Mechanical advantage = 4
Explanation:
Given the following data;
Distance of effort, de = 8m
Distance of ramp, dr = 2m
To find the mechanical advantage;
Mechanical advantage = de/dr
Substituting into the equation, we have;
Mechanical advantage = 8/2
Mechanical advantage = 4
Answer:
Please see below as the answer is self-explanatory.
Explanation:
- We can take the initial velocity vector, which magnitude is a given (67 m/s) and project it along two directions perpendicular each other, which we choose horizontal (coincident with x-axis, positive to the right), and vertical (coincident with y-axis, positive upward).
- Both movements are independent each other, due to they are perpendicular.
- In the horizontal direction, assuming no other forces acting, once launched, the supply must keep the speed constant.
- Applying the definition of cosine of an angle, we can find the horizontal component of the initial velocity vector, as follows:

- Applying the definition of average velocity, since we know the horizontal distance to the target, we can find the time needed to travel this distance, as follows:

- In the vertical direction, once launched, the only influence on the supply is due to gravity, that accelerates it with a downward acceleration that we call g, which magnitude is 9.8 m/s2.
- Since g is constant (close to the Earth's surface), we can use the following kinematic equation in order to find the vertical displacement at the same time t that we found above, as follows:

- In this case, v₀y, is just the vertical component of the initial velocity, that we can find applying the definition of the sine of an angle, as follows:

- Replacing in (3) the values of t, g, and v₀y, we can find the vertical displacement at the time t, as follows:

- Since when the payload have traveled itself 400 m, it will be at a height of 53.5 m (higher than the target) we can conclude that the payload will be delivered safely to the drop site.
Transverse waves travel on a direction that is perpendicular to the motion of the particles (or whatever medium is waving) So the particles must be moving east to west, which is transverse to the north-south motion of the wave