Answer:
112 m/s², 79.1°
Explanation:
In the x direction, given:
x₀ = 0 m
x = 19,500 cos 32.0° m
v₀ = 1810 cos 20.0° m/s
t = 9.20 s
Find: a
x = x₀ + v₀ t + ½ at²
19,500 cos 32.0° = 0 + (1810 cos 20.0°) (9.20) + ½ a (9.20)²
a = 21.01 m/s²
In the y direction, given:
y₀ = 0 m
y = 19,500 sin 32.0° m
v₀ = 1810 sin 20.0° m/s
t = 9.20 s
Find: a
y = y₀ + v₀ t + ½ at²
19,500 sin 32.0° = 0 + (1810 sin 20.0°) (9.20) + ½ a (9.20)²
a = 109.6 m/s²
The magnitude of the acceleration is:
a² = ax² + ay²
a² = (21.01)² + (109.6)²
a = 112 m/s²
And the direction is:
θ = atan(ay / ax)
θ = atan(109.6 / 21.01)
θ = 79.1°
When Alana moving 19km/h, a stationary object will be perceived by her as moving toward her with 19km/h velocity. If the object is not stationary(velocity isn't zero), the speed will increase by the object velocity.
the relative speed of the tennis ball=
the speed of Alana + true speed of the tennis ball
19km/h+ 11km/h= 30km/h
In “Ultraviolet light” and “X-ray” light wavelength regions are needed to carry out observations to study the “accretion disk” around “a white dwarf” in a “binary system”.
<u>Explanation</u>:
Occurrence of an accretion disk is due to presence of diffuse material around a white dwarf in orbital motion. White dwarf is constituted from electron-degenerate matter therefore also called as degenerate dwarf in binary system. Frictional forces and gravitational forces are responsible to compress and high “temperature” of the material, results with emission of “electromagnetic radiation”. “Accretion disks” of white dwarf radiate in the UV-rays and X-rays wavelength region of spectrum.
<span>the one that should be taken as consideration when describing the quality of a sound is: D.The number of the overtones in the sound
Too many overtones indicated that there is too many unrelated sound that make a lot of the sound's part became redundant and unecessary</span>
Buddy, I think you need to evaluate your question and fix it. Because it's not making any sense, whatsoever.