Answer:
energy which a body possesses by virtue of being in motion.
Explanation:
Answer:
heterogeneous mixture has components that are not evenly distributed. This means that you can easily distinguish between the different components.
Answer:
at the speed of light (
)
Explanation:
The second postulate of the theory of the special relativity from Einstein states that:
"The speed of light in free space has the same value c in all inertial frames of reference, where
"
This means that it doesn't matter if the observer is moving or not relative to the source of ligth: he will always observe light moving at the same speed, c.
In this problem, we have a starship emitting a laser beam (which is an electromagnetic wave, so it travels at the speed of light). The startship is moving relative to the Earth with a speed of 2.0*10^8 m/s: however, this is irrelevant for the exercise, because according to the postulate we mentioned above, an observer on Earth will observe the laser beam approaching Earth with a speed of
.
Answer:
, it will sink
Explanation:
The density of an object is given by

where
m is the mass of the object
V is its volume
For the body in the problem, we have
m = 4 kg = 4000 g

Therefore, its density is

And the object will sink in water, because its density is larger than that of water, which is
. (an object sinks when its density is larger than that of water, otherwise it floats).
Answer:
404K
Explanation:
Data given, Kinetic Energy.K.E=8.37*10^-21J
Note: as the temperature of a is increase, the rate of random movement will increase, hence leading to more collision per unit time. Hence we can say that the relationship between the kinetic energy and the temperature is a direct variation.
This relationship can be expressed as

where K is a constant of value 1.38*10^-23
Hence if we substitute the values, we arrive at

converting to degree we have 