Answer is: <span>lumps os sugar dissolving in water.
Sugar has very good solubility in water and it dissolves readily, which is </span><span>example of a physical change.
</span>Gibbs free energy (G) determines if reaction will proceed
spontaneously, if ΔG is negative, reaction is spontaneous <span>(ΔG = ΔH - T·ΔS).
</span>In other examples, reactions are spontaneous in reverse way, for example spontaneous is forming sodium chlorine from sodium metal and chlorine gas, but not sodium chloride forming sodium metal and chlorine gas, because a lot of energy is needed for that reaction.
Yes thenpropert snd the negative end causes a iconic water fall
Answer:
This question is incomplete
Explanation:
This question is incomplete.
However, when all the required data are available, you can use the formula/steps below
Average speed/velocity (m/s) = distance (in metres) ÷ time (in seconds)
Time (in secs) = distance ÷ average speed/velocity
Kindly note that "blocks" is not a standard unit for distance measurement in science, hence the distance (since its a walking distance) must be in metres (or converted to metres if not in metres).
The distance in the formula is the distance from the hotel to the ice cream shop while the average speed is the distance covered per time as s/he walks to the ice cream shop and back. Hence, the answer gotten from the formula above will have to be multiplied by 2 (in order to get the time taken to walk to the ice cream shop and back) because the formula will only provide answer to one trip (time taken to walk to the shop).
After the multiplication mentioned above, the time in seconds should be converted to minutes by dividing the answer in seconds by 60
Answer:
The activation energy is 7.11 × 10⁴ J/mol.
Explanation:
Let's consider the Arrhenius equation.

where,
k is the rate constant
A is a collision factor
Ea is the activation energy
R is the ideal gas constant
T is the absolute temperature
The plot of ln k vs 1/T is a straight line with lnA as intercept and -Ea/R as slope. Then,

Answer:
The final pressure of the gas is:- 21.3 kPa
Explanation:
Using Boyle's law

Given ,
V₁ = 10.0 L
V₂ = 45.0 L
P₁ = 96.0 kPa
P₂ = ?
Using above equation as:




The final pressure of the gas is:- 21.3 kPa