Answer:
Under the earth's surface, rocks melt, metamorphize, and crystalize.
Explanation:
Metamorphic and Igneous rocks are basically dependant on the heat/pressure of the environment under the surface :) Melting, metamorphosing and crystallization all occur under earth's surface.
One mole of Fe(NO3)3, or iron(III) nitrate, has three moles of nitrate molecules, which have three moles of oxygen atoms each. We can show this mathematically:
1 mole Fe(NO3)3 * (3 moles NO3)/(1 mole Fe(NO3)3) = 3 moles NO3
3 moles NO3 * (3 moles Oxygen)/(1 mole NO3) = 9 moles Oxygen
9 moles of Oxygen in one mole Fe(NO3)3
Answer:
34 g/100 mL
Explanation:
The solubility of a compound can be expressed in g/100mL, for this we must divide the mass of the compound that dissolves in the solute by the volume of the solvent.
The solvent, in this case, is water, and that mass of the solute X that dissolved is the mass that was recovered after the solvent was drained and evaporated. So the solubility of X (S) is:
S = 0.17 kg/5L
S = 170g/5000mL
S = 170g/(5*1000)mL
S = 34 g/100 mL
Answer:
Electrolytes are substances that can ionize in water. They could be acids, bases or salts as long as they give ions when they dissolve in water.
Explanation:
- <em>Strong electrolytes</em> completely ionize when dissolved in water, leaving no neutral molecules. The strong electrolytes here are:<u> salt water</u>, <u>baking soda (NaHCO3) solution.</u>
- <em>Weak electrolytes</em> do not completely dissociate in solution, and hence have a low ionic yield. Examples of this would be<u> vinegar </u>and <u>bleach </u>(which could be sodium hypochlorite or chlorine, which are weakly dissociated).
- <em>Non-electrolytes </em>will remain as molecules and are not ionized in water at all. In this case, <u>sugar solution is a non-electrolytes</u>, even though sugar dissolves in water, but it remains as a whole molecule and not ions.
<u>Answer:</u>
Carbon and silicon both are tetravalent elements as compared to germanium, tin, and lead which are divalent.
That's because Ge, tin, and Pb show inert pair effect and has a greater nuclear effective charge on the 's' electrons due to poor shielding effect. .That's why these elements are not able to share their valence electrons while carbon and silicon does and show "catenation" which is the ability to form long chain molecules.