Answer:
The mass of the neon gas m = 1.214 kg
Explanation:
Pressure = 3 atm = 304 k pa
Volume = 0.57 L = 0.00057 
Temperature = 75 °c = 348 K
Universal gas constant = 0.0821 
We have to change the unit of this constant. it may be written as
Universal gas constant = 8.314 
Gas constant for neon =
= 0.41 
From ideal gas equation,
P V = m R T ------- (1)
We have all the variables except m. so we have to solve this equation for mass (m).
⇒ 304 ×
× 0.00057 = m × 0.41 × 348
⇒ 173.28 = 142.68 × m
⇒ m = 1.214 kg
This is the mass of the neon gas.
<span>N2 + 3H2 → 2 </span>NH3<span> from bal. rxn., 2 moles of </span>NH3<span> are formed per 3 moles of </span>H2, 2:3 moleH2<span>: 3.64 </span>g<span>/ 2 </span>g<span>/mole </span>H2<span>= 1.82 1.82 moles </span>H2<span> x 2/3 x 17
</span>
Answer:
The correct answer is V1/T1=V2/T2.
Explanation:
Just took the test
Answer:
12.32 L.
Explanation:
The following data were obtained from the question:
Mass of CH4 = 8.80 g
Volume of CH4 =?
Next, we shall determine the number of mole in 8.80 g of CH4. This can be obtained as follow:
Mass of CH4 = 8.80 g
Molar mass of CH4 = 12 + (1×4) = 12 + 4 = 16 g/mol
Mole of CH4 =?
Mole = mass/Molar mass
Mole of CH4 = 8.80 / 16
Mole of CH4 = 0.55 mole.
Finally, we shall determine the volume of the gas at stp as illustrated below:
1 mole of a gas occupies 22.4 L at stp.
Therefore, 0.55 mole of CH4 will occupy = 0.55 × 22.4 = 12.32 L.
Thus, 8.80 g of CH4 occupies 12.32 L at STP.