Answer: 1. 10% is used to live 30% is stored.
2. an educated guess.
Explanation:
<h3>
Answer:</h3>
9.6724 g MgO
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Stoichiometry</u>
- Reading a Periodic Table
- Using Dimensional Analysis
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
[RxN - Balanced] 2Mg + O₂ → 2MgO
[Given] 5.8332 g Mg
<u>Step 2: Identify Conversions</u>
[RxN] 2 mol Mg = 2 mol MgO
Molar Mass of Mg - 24.31 g/mol
Molar Mass of O - 16.00 g/mol
Molar Mass of MgO - 24.31 + 16.00 = 40.31 g/mol
<u>Step 3: Stoichiometry</u>
- Set up:

- Multiply/Divide:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 5 sig figs.</em>
9.67241 g MgO ≈ 9.6724 g MgO
Answer:
As the kinetic energy of the gaseous solute increases, its molecules have a greater tendency to escape the attraction of the solvent molecules and return to the gas phase. Therefore, the solubility of a gas decreases as the temperature increases.
Explanation:
As the kinetic energy of the gaseous solute increases, its molecules have a greater tendency to escape the attraction of the solvent molecules and return to the gas phase. Therefore, the solubility of a gas decreases as the temperature increases
Answer:
2NaNO3+1PbO=1Pb(NO3)2+1Na2O
Explanation:
My chem teacher always had us make a T-chart for products and reactants on both sides to help you figure out balancing equations
Answer: Option (B) is the correct answer.
Explanation:
Molar mass is defined as the sum of masses of all the atoms present in a compound.
For example, atomic mass of barium is 137.32 g/mol and atomic mass of bromine is 79.90 g/mol.
Therefore, molar mass of
will be as follows.
Molar mass = atomic mass of Ba +
= 137.32 g/mol + 
= 297.12 g/mol
Hence, we can conclude that molar mass of [tex]BaBr_{2}[tex] is 297.12 g/mol.