Answer:
The magnitude of the electric field is 5.75 N/C towards positive x- axis.
Explanation:
Given that,
Point charge at origin = 2 nC
Second charge = 5 nC
Distance at x axis = 8 m
We need to calculate the electric field at the point x = 2 m
Using formula of electric field

Put the value into the formula


The direction is toward positive x- axis.
Hence, The magnitude of the electric field is 5.75 N/C towards positive x- axis.
Answer:
The value of each charge is 4.22 x 10⁻⁵ C
Explanation:
Given;
distance between the two identical charges, d = 2 m
the force of repulsion between these two charges, F = 4N
Apply Coulomb's law;

Therefore, the value of each charge is 4.22 x 10⁻⁵ C
It is D as u dont need a stop watch aft that
I think the corect answer would be C. When a police officer receives information that you are speeding in your vehicle, she is using the frequency of the wave to measure the Doppler Effect. As the speed of a vehicle increases, the greater the change of the frequency of the waves would be transmitted to the radar guns which is being used by the police officer. Doppler effect is an effect that is observed in sound and light waves as these waves move away or to the direction of the observer. This is being used in many applications like in astronomy, weather balloons, the radar guns,and for underwater researches.
Answer:
The acceleration of the cart is 1.0 m\s^2 in the negative direction.
Explanation:
Using the equation of motion:
Vf^2 = Vi^2 + 2*a*x
2*a*x = Vf^2 - Vi^2
a = (Vf^2 - Vi^2)/ 2*x
Where Vf is the final velocity of the cart, Vi is the initial velocity of the cart, a the acceleration of the cart and x the displacement of the cart.
Let x = Xf -Xi
Where Xf is the final position of the cart and Xi the initial position of the cart.
x = 12.5 - 0
x = 12.5
The cart comes to a stop before changing direction
Vf = 0 m/s
a = (0^2 - 5^2)/ 2*12.5
a = - 1 m/s^2
The cart is decelerating
Therefore the acceleration of the cart is 1.0 m\s^2 in the negative direction.