Acceleration of the ball is 
Explanation:
The acceleration of the ball can be found by using Newton's second law of motion, which states that the net force acting on an object is equal to the product between the mass of the object and its acceleration:

where
F is the net force
m is the mass
a is the acceleration
For the ball in this problem, we have
m = 0.50 kg (mass)
F = 25 N (force)
thereofre, the acceleration of the ball is

Learn more about Newton's second law:
brainly.com/question/3820012
#LearnwithBrainly
Answer:
3.42N
Explanation:
*not too sure bc i left my physics notes at school so it might not be 100% accurate :p*
Use the equation: F = (GMm)/(r^2)
F = force of gravity
G = gravitational constant (6.7x10^-11)
M = mass1 (2.5x10^30kg)
m = mass2 (1kg)
r = radius (7000m)
Plug it in: F = ((6.7x10^-11)(2.5x10^30)(1)) / (7000^2)
F = (1.675x10^20) / (4.9x10^7)
F = 3.4183673x10^12
F = 3.42N
Answer: The velocity at different marked time points are given as
t1 = -
t2 = +
t3 = +
t4 = -
t5 = 0
Explanation:
The slope of the tangent of the curve indicates the instantaneous velocity. So if the slope of the tangent is positive, that Is, the tangent makes a positive angle (above the horizontal axis) with the horizontal
axis, then the velocity at this point is positive, and if the slope of the tangent is negative, that is the tangent makes a negative angle with the horizontal axis (below the horizontal axis), then the velocity at this point is negative.
When the tangent of the line is parallel to the horizontal axis, the velocity is 0.
From the position-time graph attached, the sign on the instantaneous velocity for each time marked on the graph is given below
t1 = -
t2 = +
t3 = +
t4 = -
t5 = 0
QED!