1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anestetic [448]
3 years ago
13

The velocity of a particle is given by v=20t² - 100t + 50, where v is in meters per second and t is in seconds. Evaluate the vel

ocity when a is zero and the distance travelled at that instant.
Physics
2 answers:
nadezda [96]3 years ago
7 0
<h2>Answer:</h2>

velocity =  50m/s

distance = -83.33m

<h2>Explanation:</h2>

The velocity of the particle is given by;

v = 20t² - 100t + 50        -------------------(i)

Since acceleration is the time rate of change in velocity, to get the acceleration (a), we find the derivative of equation (i) with respect to t as follows;

a = \frac{dv}{dt} = \frac{d(20t^{2}  - 100t + 50)}{dt}

a = 40t - 100            ------------------(ii)

Now, when a = 0, let's find the time t by substituting the value of a into equation (ii) as follows;

0 = 40t - 100

=> 40t = 100

=> t = \frac{100}{40}

=> t = 2.5seconds.

This means that at t = 2.5 seconds, the acceleration of the particle is zero(0)

(a) Now, to get the velocity at this instant (t = 2.5s), substitute the value of t into equation (i) as follows;

v = 20(0)² - 100(0) + 50

v = 0 - 0 + 50

v = 50 m/s

Therefore, the velocity when a is zero is 50m/s

(b) To get the distance (s) travelled at that instant, we integrate equation (i) as follows;

s = \int\limits^a_b {v} \, dt      -----------------------(iii)

Where;

a = the time instant = 2.5 seconds

b = the initial time instant = 0

v =  20t² - 100t + 50

Substitute these values into equation (iii) as follows;

s = \int\limits^a_b {(20t^{2} -100t + 50)} \, dt

s = \frac{20t^{3} }{3} - \frac{100t^{2} }{2} + 50t |^{a}_{b}

Substitute the values of a and b as follows;

s = [\frac{20(2.5)^{3} }{3} - \frac{100(2.5)^{2} }{2} + 50(2.5)]  - [\frac{20(0)^{3} }{3} - \frac{100(0)^{2} }{2} + 50(0)]

s =  [\frac{20(2.5)^{3} }{3} - \frac{100(2.5)^{2} }{2} + 50(2.5)] - 0

s = 104.17 - 312.5 + 125

s = -83.33m

Therefore, the distance traveled at that instant is -83.33m

allochka39001 [22]3 years ago
5 0

Explanation:

It is given that,

The velocity of a particle is given by :

v=20t^2-100t+50

Where

v is in m/s and t is in seconds

Let a is the acceleration of the object at time t. So,

a=\dfrac{dv}{dt}

a=\dfrac{d(20t^2-100t+50)}{dt}

a=40t-100

When a = 0

40t-100=0

t = 2.5 s

a is zero at t = 2.5 s. Velocity, v=20(2.5)^2-100(2.5)+50

v = -75 m/s

Since, v=\dfrac{ds}{dt}, s is the distance travelled

s=\int\limits{vdt}

s=\int\limits{(20t^2-100t+50)dt}

s=\dfrac{20t^3}{3}-50t^2+50t

At t = 2.5 s, s=\dfrac{20(2.5)^3}{3}-50(2.5)^2+50(2.5)

s = −83.34 m

Hence, this is the required solution.

You might be interested in
In transistor emitter current is equal to which current?
Paladinen [302]
In transistor,
Emitter current is equal to the sum of base current and collector current.
Thanks!
8 0
3 years ago
The property of matter that describes what it is made of
const2013 [10]

Answer:

Miixture

Explanation:

The answer is mixture

4 0
3 years ago
Temperature and pressure of a region upstream of a shockwave are 295 K and 1.01* 109 N/m². Just downstream the shockwave, the te
seraphim [82]

Answer:

change in internal energy 3.62*10^5 J kg^{-1}

change in enthalapy  5.07*10^5 J kg^{-1}

change in entropy 382.79 J kg^{-1} K^{-1}

Explanation:

adiabatic constant \gamma =1.4

specific heat is given as =\frac{\gamma R}{\gamma -1}

gas constant =287 J⋅kg−1⋅K−1

Cp = \frac{1.4*287}{1.4-1} = 1004.5 Jkg^{-1} k^{-1}

specific heat at constant volume

Cv = \frac{R}{\gamma -1} = \frac{287}{1.4-1} = 717.5 Jkg^{-1} k^{-1}

change in internal energy = Cv(T_2 -T_1)

                            \Delta U = 717.5 (800-295)  = 3.62*10^5 J kg^{-1}

change in enthalapy \Delta H = Cp(T_2 -T_1)

                                 \Delta H = 1004.5*(800-295) = 5.07*10^5 J kg^{-1}

change in entropy

\Delta S =Cp ln(\frac{T_2}{T_1}) -R*ln(\frac{P_2}{P_1})

\Delta S =1004.5 ln(\frac{800}{295}) -287*ln(\frac{8.74*10^5}{1.01*10^5})

\Delta S = 382.79 J kg^{-1} K^{-1}

7 0
3 years ago
How are the mass and weight of an object related? Include a description with words and an equation.
nikdorinn [45]
The weight is the force experienced, whereas the mass represents the actual quantity of matter inside a body..
weigh on the surface of the earth is equal to mg
mass is m
and at the centre weight is 0 due to 0 acceleration that's 0 g
but mass is always constant and remains m, no matter where you are
6 0
3 years ago
A Carnot engine operates between temperature levels of 600 K and 300 K. It drives a Carnot refrigerator, which provides cooling
KATRIN_1 [288]

Explanation:

Formula for maximum efficiency of a Carnot refrigerator is as follows.

      \frac{W}{Q_{H_{1}}} = \frac{T_{H_{1}} - T_{C_{1}}}{T_{H_{1}}} ..... (1)

And, formula for maximum efficiency of Carnot refrigerator is as follows.

     \frac{W}{Q_{C_{2}}} = \frac{T_{H_{2}} - T_{C_{2}}}{T_{C_{2}}} ...... (2)

Now, equating both equations (1) and (2) as follows.

 Q_{C_{2}} \frac{T_{H_{2}} - T_{C_{2}}}{T_{C_{2}}} = Q_{H_{1}} \frac{T_{H_{1}} - T_{C_{1}}}{T_{H_{1}}}        

        \gamma = \frac{Q_{C_{2}}}{Q_{H_{1}}}

                    = \frac{T_{C_{2}}}{T_{H_{1}}} (\frac{T_{H_{1}} - T_{C_{1}}}{T_{H_{2}} - T_{C_{2}}})

                    = \frac{250}{600} (\frac{(600 - 300)K}{300 K - 250 K})

                    = 2.5

Thus, we can conclude that the ratio of heat extracted by the refrigerator ("cooling load") to the heat delivered to the engine ("heating load") is 2.5.

4 0
3 years ago
Other questions:
  • Suggest reasons why poaching for subsistence is likely to be less damaging to the biodiversity of an area than poaching for prof
    9·1 answer
  • When an object with a negative charge is moved from point A to point B through an external electrical field, it gains electrical
    15·1 answer
  • PLEASE HELP!!! URGENT MATTERS!!!!
    13·1 answer
  • Physics question, please show work for brainliest :)
    15·2 answers
  • A golf ball is rolling in the grass. What must happen to stop the ball from continuing to roll?
    6·1 answer
  • Which is not an issue with waste from nuclear energy?
    5·1 answer
  • Object A weighs 750 N on earth. Object B weighs 750 N on Jupiter.
    12·1 answer
  • A force of 45 newtons is applied on an object, moving it 12 meters away in the same direction as the force. What is the magnitud
    11·1 answer
  • A 75.0 kg students sits 1.15 m away from a 68.4 kg student. What is the force of gravitational attraction between them?
    15·1 answer
  • If the range of a projectile's trajectory is ten times larger than the height of the trajectory, then what was the angle of laun
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!