1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
stich3 [128]
3 years ago
5

A frog is at the bottom of a 17-foot well. Each time the frog leaps, it moves up 3 feet. If the frog has not reached the top of

the well, then the frog slides back 1 foot before it is ready to make another leap. How many leaps will the frog need to escape the well?
Physics
1 answer:
docker41 [41]3 years ago
7 0

Answer:

The frog takes 8 jumps to reach top of well

Explanation:

Given data

Frog at bottom=17 foot

Each time frog leaps 3 feet

Frog has not reached the top of the well, then the frog slides back 1 foot

To Find

Total number of leaps the frog needed to escape from well

Solution

in 1 jump distance jumped=3+(-1)

                                           =2 feet

                                           =2×1 feet

The "-1" is because the frog goes back

Now After 2 jumps the distance jumped as:

                     Distance Jumped=2+2

                     Distance Jumped=2*2

                                                   =4 feet

Similarly after 7 jumps

                    Distance Jumped=2+2+......+2

                    Distance Jumped=2*7

                                                 =14 feet

Now after 8th jump the frog climbs but doesnot slide back as it is reached to the top of well.

So

              Distance Jumped=(Distance Jumped after 7 jumps)+3

                                           =14+3

                                           =17 feet

The frog takes 8 jumps to reach top of well                

You might be interested in
Technician a says multiple discharge ignition system fires the spark plug during each of the engine's four cycle strokes. Techni
patriot [66]

Answer:

Technician B only is correct

Explanation:

Here we have that the multiple discharge ignition system is a system that fires the spark plug multiple times during each power stroke to provide ample spark to complete the ignition. Therefore,  technician A is not correct.

The dual spark plug ignition system is a method if obtaining the ideal combustion and improved fuel consumption than a single spark plug ignition system.

Therefore, only technician B is correct.

7 0
3 years ago
GIVEAWAY IMAKE SURE YOU SAY TY! ILL GIVE MORE IF DO
Gwar [14]

Answer:

ok

Explanation:

ok

6 0
2 years ago
Read 2 more answers
efrigerant-134a is expanded isentropically from 600 kPa and 70°C at the inlet of a steady-flow turbine to 100 kPa at the outlet.
PolarNik [594]

Answer:

Inlet : v_i=0.0646\frac{m}{s}

Outlet:  v_o=0.171\frac{m}{s}

Explanation:

1) Notation and important concepts

Flow of mass represent "the mass of a substance which passes per unit of time".

Flow rate represent "a measure of the volume of liquid that moves in a certain amount of time"

Specific volume is "the ratio of the substance's volume to its mass. It is the reciprocal of density."

Isentropic process is a "thermodynamic process, in which the entropy of the fluid or gas remains constant".

We know that the flow of mass is given by the following expression

\dot{m}=\frac{\dot{V}}{\upsilon}, where \dot{V} represent the flow rate and \upsilon the specific volume at the pressure and temperature given.

A_i=0.5m^2 is the inlet area

P_i=600Kpa pressure at the inlet area

T_i=70C temperature at the inlet area

A_o=1m^2 is the outlet area

P_o=100Kpa pressure at the outlet area

T_o=C temperature at the outlet area

\dot{m}=0.75\frac{kg}{s} represent the flow of mass

If we look at the first figure attached Table A-13 we see that the specific volume for the inlet condition is

\upsilon_i =0.04304\frac{kg}{m^3} and the entropy is h_i=1.0645\frac{KJ}{KgK}=h_o

With the value of entropy and the outlet pressure of 100 Kpa we can find we specific volume at the outlet condition since w ehave the entropy h_o=1.0645\frac{KJ}{KgK}

Since on the table we don't have the exact value we need to interpolate between these two values (see the second figure attached)

h_1=1.0531\frac{KJ}{KgK} , \upsilon_1=0.22473\frac{kg}{m^3}

h_2=1.0829\frac{KJ}{KgK} , \upsilon_2=0.23349\frac{kg}{m^3}

Our interest value would be given using interpolation like this:

\upsilon=0.22473+\frac{(0.23349-0.22473)}{(1.0829-1.0531)}(1.0645-1.0531)=0.228\frac{kg}{m^3}

2) Solution to the problem

Now since we have all the info required to solve the problem we can find the velocities on this way.

We know from the definition of flow of mass that \dot{m}=\frac{\dot{V}}{\upsilon}, but since \dot{V}=Av we have this:

\dot{m}=\frac{Av}{\upsilon}

If we solve from the velocity v we have this:

v=\frac{\upsilon \dot{m}}{A}   (*)

And now we just need to replace the values into equation (*)

For the inlet case:

v_i=\frac{\upsilon_i \dot{m}}{A_i}=\frac{0.043069\frac{kg}{m^3}(0.75\frac{kg}{s})}{0.5m^2}=0.0646\frac{m}{s}

For the oulet case:

v_o=\frac{\upsilon_o \dot{m}}{A_o}=\frac{0.228\frac{kg}{m^3}(0.75\frac{kg}{s})}{1m^2}=0.171\frac{m}{s}

7 0
3 years ago
What is the maximum value of the magnetic field at a distance of 2.5 m from a light bulb that radiates 100 W of single-frequency
Anvisha [2.4K]

Answer:

1.04\times 10^{-7} T

Explanation:

IP  = Power of the bulb = 100 W

r  = distance from the bulb = 2.5 m

I = Intensity of light at the location

Intensity of the light at the location is given as

I = \frac{P}{4\pi r^{2}}

I = \frac{100}{4(3.14) (2.5)^{2}}

I = 1.28 W/m²

B_{o} = maximum magnetic field

Intensity is given as

I = \frac{B_{o}^{2}c}{2\mu _{o}}

1.28 = \frac{B_{o}^{2}(3\times 10^{8})}{2(12.56\times 10^{-7})}

B_{o} = 1.04\times 10^{-7} T

7 0
3 years ago
Needing the answers ... i’ll make you brainliest ! Thank you✅
otez555 [7]

1) 4°C : It has the highest density as shown on the graph.

2) Water expands when it freezes, making it less dense than just water.

3) The ice would sink to the bottom, then the rest of the water would freeze as well, the entire lake/river/whatever will freeze eliminating the organisms that live there.

7 0
3 years ago
Other questions:
  • A weather balloon is inflated to a volume of 27.6 l at a pressure of 736 mmhg and a temperature of 26.1 âc. the balloon rises in
    11·1 answer
  • A cyclist is riding a bicycle at a speed of 22 mph on a horizontal road. The distance between the axles is 42 in., and the mass
    6·1 answer
  • What is the speed of a truck that travels 10 km in 10 minutes?
    12·2 answers
  • If the motor exerts a constant force of 300 N on the cable, determine the speed of the 26-kg crate when it travels s = 10 m up t
    10·1 answer
  • A basket ball sits in the ball cage in the gym motionless
    14·1 answer
  • A train travels 2km in 100 seconds. find the velocity of the train
    13·1 answer
  • A consequence of yo-yo dieting is what
    7·1 answer
  • 4.- Una vagoneta de 1000 kg de peso parte del reposo en el punto 1 y desciende, sin rozamiento, por la vía indicada en la figura
    7·1 answer
  • with the enterprise of video-gaming technology growing every year, researchers have ercently become interested in the effects of
    11·1 answer
  • A ball is thrown up into the air with 100 j of kinetic energy, which is transformed to gravitational potential energy at the top
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!