rationalizing the numerator, or namely, "getting rid of that pesky radical at the top".
we simply multiply top and bottom by a value that will take out the radicand in the numerator.
![\bf \cfrac{\sqrt[3]{144x}}{\sqrt[3]{y}}~~ \begin{cases} 144=2\cdot 2\cdot 2\cdot 2\cdot 3\cdot 3\\ \qquad 2^3\cdot 18 \end{cases}\implies \cfrac{\sqrt[3]{2^3\cdot 18x}}{\sqrt[3]{y}}\implies \cfrac{2\sqrt[3]{ 18x}}{\sqrt[3]{y}} \\\\\\ \cfrac{2\sqrt[3]{ 18x}}{\sqrt[3]{y}}\cdot \cfrac{\sqrt[3]{(18x)^2}}{\sqrt[3]{(18x)^2}}\implies \cfrac{2\sqrt[3]{(18x)(18x)^2}}{\sqrt[3]{(y)(18x)^2}}\implies \cfrac{2\sqrt[3]{(18x)^3}}{\sqrt[3]{18^2x^2y}}](https://tex.z-dn.net/?f=%5Cbf%20%5Ccfrac%7B%5Csqrt%5B3%5D%7B144x%7D%7D%7B%5Csqrt%5B3%5D%7By%7D%7D~~%0A%5Cbegin%7Bcases%7D%0A144%3D2%5Ccdot%202%5Ccdot%202%5Ccdot%202%5Ccdot%203%5Ccdot%203%5C%5C%0A%5Cqquad%202%5E3%5Ccdot%2018%0A%5Cend%7Bcases%7D%5Cimplies%20%5Ccfrac%7B%5Csqrt%5B3%5D%7B2%5E3%5Ccdot%20%2018x%7D%7D%7B%5Csqrt%5B3%5D%7By%7D%7D%5Cimplies%20%5Ccfrac%7B2%5Csqrt%5B3%5D%7B%20%2018x%7D%7D%7B%5Csqrt%5B3%5D%7By%7D%7D%0A%5C%5C%5C%5C%5C%5C%0A%5Ccfrac%7B2%5Csqrt%5B3%5D%7B%20%2018x%7D%7D%7B%5Csqrt%5B3%5D%7By%7D%7D%5Ccdot%20%5Ccfrac%7B%5Csqrt%5B3%5D%7B%2818x%29%5E2%7D%7D%7B%5Csqrt%5B3%5D%7B%2818x%29%5E2%7D%7D%5Cimplies%20%5Ccfrac%7B2%5Csqrt%5B3%5D%7B%2818x%29%2818x%29%5E2%7D%7D%7B%5Csqrt%5B3%5D%7B%28y%29%2818x%29%5E2%7D%7D%5Cimplies%20%5Ccfrac%7B2%5Csqrt%5B3%5D%7B%2818x%29%5E3%7D%7D%7B%5Csqrt%5B3%5D%7B18%5E2x%5E2y%7D%7D)
![\bf \cfrac{2(18x)}{\sqrt[3]{324x^2y}}~~ \begin{cases} 324=2\cdot 2\cdot 3\cdot 3\cdot 3\cdot 3\\ \qquad 12\cdot 3^3 \end{cases}\implies \cfrac{36x}{\sqrt[3]{12\cdot 3^3x^2y}} \\\\\\ \cfrac{36x}{3\sqrt[3]{12x^2y}}\implies \cfrac{12x}{\sqrt[3]{12x^2y}}](https://tex.z-dn.net/?f=%5Cbf%20%5Ccfrac%7B2%2818x%29%7D%7B%5Csqrt%5B3%5D%7B324x%5E2y%7D%7D~~%0A%5Cbegin%7Bcases%7D%0A324%3D2%5Ccdot%202%5Ccdot%203%5Ccdot%203%5Ccdot%203%5Ccdot%203%5C%5C%0A%5Cqquad%2012%5Ccdot%203%5E3%0A%5Cend%7Bcases%7D%5Cimplies%20%5Ccfrac%7B36x%7D%7B%5Csqrt%5B3%5D%7B12%5Ccdot%203%5E3x%5E2y%7D%7D%0A%5C%5C%5C%5C%5C%5C%0A%5Ccfrac%7B36x%7D%7B3%5Csqrt%5B3%5D%7B12x%5E2y%7D%7D%5Cimplies%20%5Ccfrac%7B12x%7D%7B%5Csqrt%5B3%5D%7B12x%5E2y%7D%7D)
Answer
<h2>11</h2>
Step-by-step explanation:
well is you know 8+8=16 then....3-11=8
Answer:
B. 5 ≤ n≤ 8
f. 10 ≤ S ≤ 16
C. c=2n
d. S = c
Step-by-step explanation:
Jada is making lemonade for a get together with her friends. She expects a total of 5 to 8 people to be there (including herself).?
She plans to prepare 2 cups of lemonade for each person. The lemonade recipe calls for 4 scoops of lemonade powder for each quart of water. Each quart is equivalent to 4 cups. Let n represent the number of people at the get together, c the number of cups of water, S the number of scoops of lemonade powder. Select all the mathematical statements that repsent the quantities and constraints in the situation.
A. 5<n<8
B. 5≤ n≤8
C. c=2n
d. S = c
e. 10<c<16
f. 10≤S≤16
Let
n = number of people at the get together,
c = number of cups of water,
S = number of scoops of lemonade powder.
She expects a total of 5 to 8 people to be there (including herself).
B. 5 ≤ n ≤ 8
She plans to prepare 2 cups of lemonade for each person.
With minimum of 5 people and maximum of 8 people
2 × 5 = 10
2 × 8 = 16
f. 10≤S≤16
The number of cups of water is twice the number of people at the party
C. c=2n
Number of scoops of lemonade powder is equivalent to number of cups of water
d. S = c
Answer:
72
Step-by-step explanation:
We need to multiply all of them because there are 3 choices for jackets, 6 for scarves and so on.
Answer:
question 3: 1/3 question 4: 5/7 question 5: 2/3