Answer:
B. 1500 kg*m/s
Explanation:
Momentum p = m* v
In any type of collision, the total momentum is preserved!
The total momentum before and the total momentum after the collision is the same. We know the mass and speed after the collision so we can calculate the total momentum.
p1 + p2 =
m1*v1 + m2*v2
m1 = me = 300 kg
v1 = 3 m/s
v2 = 2 m/s
Substitute the given numbers:
300*3 + 300+2
900 + 600
1500 kg*m/s, which is answer B.
average velocity is vector displacement / time
time is "almost exactly one hour"
disp = -10m
v= -10/1x60x60 = -1/360m/s
Answer:
<em>J=36221 Kg.m/s</em>
Explanation:
<u>Impulse-Momentum Theorem</u>
These two magnitudes are related in the following way. Suppose an object is moving at a certain speed and changes it to . The impulse is numerically equivalent to the change of linear momentum. Let's recall the momentum is given by
The initial and final momentums are, respectively
The change of momentum is
It is numerically equal to the Impulse J
We are given
The impulse the car experiences during that time is
J=-36221 Kg.m/s
The magnitude of J is
J=36221 Kg.m/s
Answer:
Explanation:
From the question we are told that:
Length
Distance apart
Electron Transferred
Therefore
Total Charge
Since Charge on each electron is
Therefore
Generally the equation for Charge density is mathematically given by
Where
Area
Therefore
Generally the equation for Electric Field in the capacitor is mathematically given by
Answer:
a Charge flows along a complete conducting path
Explanation: