1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ankoles [38]
3 years ago
14

Djejfje kdjejfjeofjod fjdidjskd.jdjdjdjdp

Physics
1 answer:
Mariana [72]3 years ago
5 0

YUHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH gbghdwqygfywefyugsadfyuyuqwbhfbds       hehrwuhuaijkfa

You might be interested in
A record turntable is rotating at 33 rev/min. A watermelon seed is on the turntable 4.4 cm from the axis of rotation. (a) Calcul
romanna [79]

Answer:

a) a =0.53 m/s²

b) μ=0.054

c) μ = 0.068

Explanation:

a) If we assume that the turntable is rotating at a constant speed, the only force acting on the seed parallel to the surface, which keeps it  from following a straight line trajectory, is the centripetal force.

So, we can apply Newton's 2nd Law to the seed in this way:

Fnet = m*a = m*ac = m*ω²*r

We have the value of the angular speed, ω, in rev/min, so it is advisable to convert it to rad/sec, as follows:

ω = 33 rev/min*(1 min/60 sec)*(2*π rad/ 1 rev) = 11/10*π rad/sec

So, replacing in (1), we can solve for ac, as follows:

ac = ω²*r = (11/10)²*π²*0.044 m = 0.53 m/s²

b) Now, the centripetal force that we found above, is not a new type of force, it must be a force that explains the behavior of the seed.

As the seed does not slip, the only force acting  on it parallel to the surface, is the static  friction force, which has a maximum value, as follows:

Ff = μ*N

As there is no movement in the vertical direction, this means that the normal force must be equal and opposite to Fg, so we can write the expression for Ff as follows:

Ff = μ*m*g

Now, this force is no other than centripetal force, so we can write this equation:

Ff  = Fc ⇒ μ*m*g = m*ac

⇒ μ*g = ac

Solving for μ:

μ = ac/g = 0.53 m/s² / 9.8 m/s² = 0.054

c) During the acceleration period, added to the centripetal acceleration, as the angular speed is not constant, we will have also an angular acceleration, γ , which we can get as follows:

γ = Δω/Δt = (11/10)*π / 0.37 s = 9.34 rad/sec²

By definition of angular acceleration, there exists a fixed  relationship between the angular acceleration and the tangential acceleration (same as the one between angular and tangential speed), as follows:

at = γ*r = 9.34 rad/sec²*0.044 m = 0.41 m/s

When the turntable has reached to its maximum angular velocity, it will have also the maximum value of the centripetal acceleration, which we have just found out.

So, the magnitude of the total acceleration (at the moment of maximum acceleration) as they are perpendicular each  other) , is given by the following expression:

a = √(ac)²+(at)² = 0.67 m/s²

Now, as friction force opposes to the relative movement between surfaces (the seed and the turntable), it shall be larger than the product of the mass times the total acceleration, acting along  the same action line, so we can say:

Ffmin = μ*m*g = m*a

⇒ μmin = a/g = 0.67 m/s²/9.8 m/s² = 0.068

5 0
3 years ago
PLZ ANSWER!!! QUICKLY
grandymaker [24]
Light because they need light to grow

3 0
3 years ago
Read 2 more answers
a feather is dropped on the moon from a height of 1.40meters. the acceleration of gravity on the moon is 1.67m/s^2. determine th
kykrilka [37]

Answer:

1min since there is no gravity on the moon so it will take time to drop on the moon.

Explanation:

6 0
3 years ago
In a physics lab, Asha is given a 10.7 kg uniform rectangular plate with edge lengths 67.3 cm by 53.5 cm . Her lab instructor re
Leya [2.2K]

Answer:

I=2.6363\ kg.m^2

Explanation:

Given:

dimension of uniform plate, (0.673\times 0.535)\ m^2

mass of plate, m=10.7\ kg

Now we find the moment of inertia about the center of mass of the rectangular plate is given as:

I_{cm}=\frac{1}{12} \times m(L^2+B^2)

where:

L= length of the plate

B= breadth of the plate

I_{cm}=\frac{1}{12} \times 10.7\times(0.673^2+0.535^2)

I_{cm}=0.6591\ kg.m^2

We know that the center of mass of the rectangular plane is at its geometric center which is parallel to the desired axis XX' .

Now we find the distance between the center of mass and the corner:

s=\frac{\sqrt{ (0.673^2+0.535^2)}}{2}

s=0.4299\ m

Now using parallel axis theorem:

I=I_{cm}+m.s^2

I=0.6591+10.7\times 0.4299^2

I=2.6363\ kg.m^2

6 0
3 years ago
The mass of a planet is 3.7 x 1024 kg. If the planet has a radius of 9.2 x 106 m what is the acceleration of gravity for a perso
nalin [4]

Explanation:

It s given that,

Mass of a planet, M=3.7\times 10^{24}\ kg

Radius of a planet, R=9.2\times 10^{6}\ m

(1) We need to find the acceleration due to gravity for a person on the surface of the planet. Its formula is given by :

g=\dfrac{GM}{R^2}

g=\dfrac{6.67\times 10^{-11}\ Nm^2/kg^2\times 3.7\times 10^{24}\ kg}{(9.2\times 10^{6}\ m)^2}

g=2.91\ m/s^2

(2) The escape velocity is given by :

v=\sqrt{\dfrac{2GM}{R}}

v=\sqrt{{\dfrac{2\times 6.67\times 10^{-11}\ Nm^2/kg^2\times 3.7\times 10^{24}\ kg}{9.2\times 10^{6}\ m}}

v = 7324.61 m/s

Hence, this is the required solution.

3 0
3 years ago
Other questions:
  • This part of the electromagnet spectrum produces heat and with special equipment can locate people at night.
    14·2 answers
  • What is a limitation of the Big Bang model?
    6·1 answer
  • A zinc atom loses 3electron to become a zinc oin
    15·1 answer
  • A jet leaves a runway whose bearing is N 3232degrees°E from the control tower. After flying 77 ​miles, the jet turns 90degrees°
    12·1 answer
  • What is the difference between an elastic and inelastic collision
    7·1 answer
  • Consider a household that uses 22.0 kW-hour of electricity per day on average. Most of that electricity is supplied by fossil fu
    15·1 answer
  • A tennis player is hitting a 58 gram tennis ball back across the net. When the racquet and the ball first make contact, the ball
    15·1 answer
  • Gravity on the surface of the moon is only 1/6 as strong as gravity on the Earth. What is the weight of a 19 kg object on the Ea
    8·1 answer
  • If a body of mass 2 kg is moving with a velocity of 30 m/s, then
    10·1 answer
  • A ball thrown vertically upwards from ground
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!