13.0/18=.07222222
sig figs: 0.722 mole of water
Answer:
How high the plants grow in the different soils.
Explanation:
The dependent variable is what happens as a result of what the experimenter changes.
The experimenter could measure how high the plants grow when placed in soil with different pH values.
Answer: The pH of solution is 10.
The pOH of the solution is 4.
Explanation:
pH is the negative logarithm of concentration of hydrogen ion.
As given concentration of acidic solution is
. Therefore, pH of the solution is calculated as follows.
![pH = -log [H^{+}]\\= -log (1.00 \times 10^{-10})\\= 10](https://tex.z-dn.net/?f=pH%20%3D%20-log%20%5BH%5E%7B%2B%7D%5D%5C%5C%3D%20-log%20%281.00%20%5Ctimes%2010%5E%7B-10%7D%29%5C%5C%3D%2010)
The relation between pH and pOH is as follows.
pH + pOH = 14
pOH = 14 - pH
= 14 - 10
= 4
Thus, we an conclude that pH of solution is 10 and pOH of the solution is 4.
Answer:
0.1077 grams
Explanation:
First we will employ the ideal gas law to determine the number of moles of nitrogen gas.
PV=nRT
P=2 atm
V=20L
R=0.08206*L*atm*mol^-1*K^-1
T=323.15 K
Thus, 2atm*20L=n*0.08206*L*atm*mol^-1*K^-1*323.15K
K, atm, and L cancels out. Thus n=2*20mol/0.08206*323.15=1.5 moles
Lastly, we must convert the number of moles to grams. This can be done by dividing the number of moles by the molar mass of nitrogen gas, which is 14 grams.
1.5/14=0.1077 grams