Mole ratio of H₂ : O₂ is 2 : 1
∴ if mole of H₂ = 1.67 mol
then mole of O₂ =

⇒ that mole of oxygen needed to react with
H₂ = 0.835 molThe answer is A
Answer:
<h3>Learning Objective
</h3><h3>Identify element pairs which are likely to form ionic or covalent bonds
</h3><h3>Key Points
</h3><h3>Ionic compounds are formed from strong electrostatic interactions between ions, which result in higher melting points and electrical conductivity compared to covalent compounds.</h3><h3>Dioxins are a group of highly toxic chemical compounds that are harmful to health. They can cause problems with reproduction, development, and the immune system. They can also disrupt hormones and lead to cancer. Known as persistent environmental pollutants (POPs), dioxins can remain in the environment for many years.
</h3><h3>Covalent compounds have bonds where electrons are shared between atoms. Due to the sharing of electrons, they exhibit characteristic physical properties that include lower melting points and electrical conductivity compared to ionic compounds.
</h3><h3>Terms
</h3><h3>electronegativity: The tendency of an atom or molecule to attract electrons and form bonds.
</h3><h3>octet rule: Atoms lose, gain, or share electrons in order to have a full valence level of eight electrons. Hydrogen and helium are exceptions because they can hold a maximum of two valence electrons.
</h3><h3>valence electrons: Electrons in the outermost principal energy (valence) level of an atom that can participate in the formation of chemical bonds with other atoms.
</h3><h3>Two Classes of Compounds
</h3><h3>Compounds are defined as substances containing two or more different chemical elements. They have distinct chemical structures characterized by a fixed ratio of atoms held together by chemical bonds. Here, we discuss two classes of compounds based on the bond type that holds the atoms together: ionic and covalent.
</h3><h3 /><h3>Covalent Compounds
</h3><h3>Covalent bonds are characterized by the sharing of electrons between two or more atoms. These bonds mostly occur between nonmetals or between two of the same (or similar) elements.Two atoms with similar electronegativity will not exchange an electron from their outermost shell; the atoms instead share electrons so that their valence electron shell is filled.
</h3><h3 /><h3>Examples of compounds that contain only covalent bonds are methane (CH4), carbon monoxide (CO), and iodine monobromide (IBr).
</h3><h3 /><h3>Ionic Compounds
</h3><h3>Ionic bonding occurs when there is a large difference in electronegativity between two atoms. This large difference leads to the loss of an electron from the less electronegative atom and the gain of that electron by the more electronegative atom, resulting in two ions. These oppositely charged ions feel an attraction to each other, and this electrostatic attraction constitutes an ionic bond.
</h3><h3 /><h3>Ionic bonding occurs between a nonmetal, which acts as an electron acceptor, and a metal, which acts as an electron donor. Metals have few valence electrons, whereas nonmetals have closer to eight valence electrons; to easily satisfy the octet rule, the nonmetal will accept an electron donated by the metal. More than one electron can be donated and received in an ionic bond.
</h3><h3 /><h3>Some examples of compounds with ionic bonding include NaCl, KI, MgCl2.</h3>
Explanation:
<h3>#hopeithelps</h3><h3>staysafe and keep well</h3><h3 /><h3>can you mark me as your brainliest pls?</h3>
Answer:
(C) Energy is released when the electron is ejected from the atom.
Explanation:
In the Bohr model of the atom, electrons are arranged in energy levels. The electrons in the lowest energy levels are nearest to the nucleus. An electron may move from a lower to a higher energy level by absorbing energy that is equal to the difference between the energies of the higher and lower energy level.
The potential energy of all electrons inside the atom have negative values and an electron which is infinitely far from the nucleus has an electrostatic potential energy of zero.
Energy is absorbed when an electron is removed from the atom (ionization). Hence the process is highly endothermic. Therefore it is false to say that "Energy is released when the electron is ejected from the atom."
Answer:A
Explanation: because i saw the sheet