The initial speed of car A is 15.18 m/s.
Momentum is defined as mass in motion. If there are two objects (the two objects in motion or only one object in motion and the other in stationary) that collide and no other forces work in the system, the law of momentum conservation applies in the system.
p=p'
pa+pb = pa'+pb'
(ma×va) + (mb×vb) = (ma×va') + (mb×vb')
- ma = mass of object A (kg) = 1,783 kg
- mb = mass of object B (kg) = 1,600 kg
- va = speed of object A before collides (m/s)
- va' = speed of object A after collides (m/s) = 8 m/s
- vb = speed of object B before collides (m/s) = 0 m/s
- vb' = speed of object B after collides (m/s) = 8 m/s
- p = momentum before collision (Ns)
- p' = momentum after collision (Ns)
(ma×va) + (mb×vb) = (ma×va') + (mb×vb')
(1,783×va) + (1,600×0) = (1,783×8) + (1,600×8)
(1,783×va) + 0 = 14,264+12,800
(1,783×va) = 27,064

va = 15.18 m/s
Learn more about The law of momentum conservation here: brainly.com/question/7538238
#SPJ4
Answer:
It slowly decreases and the friction acting on it slowing it down becomes the bigger net force, if that makes sense :)
Explanation:
Answer:
Alignment of charges at the surface of an object producing an induced charge is known as POLARIZATION
Explanation:
Polarization is a characteristic of certain electromagnetic radiations in which the direction and magnitude of the vibrating electric field are related in a specific way.
There are four types of Polarization which include
Electronic Polarization
Ionic Polarization
Orientation Polarization
Space Charge Polarization
Answer:
A. 148.23 m
B. 2.75 m/s
Explanation:
The following data were obtained from the question:
Time of flight (T) = 11 s
Maximum height (h) =?
Initial velocity (u) =?
Next, we shall determine the time taken for the ball to get to the maximum height. This can be obtained as follow:
Time of flight (T) = 11 s
Time (t) to reach the maximum height =.?
T = 2t
11 = 2t
Divide both side by 2
t = 11/2
t = 5.5 s
NOTE: Time to reach the maximum height is the same as the time taken for the ball to fall back to the plane of projection.
A. Determination of the maximum height to which the ball was thrown.
Time (t) to reach maximum height = 5.5 s
Acceleration due to gravity (g) = 9.8 m/s²
Maximum height (h) =?
h = ½gt²
h = ½ × 9.8 × 5.5²
h = 4.9 × 30.25
h = 148.23 m
B. Determination of the initial velocity.
Maximum height (h) reached = 148.23 m
Acceleration due to gravity (g) = 9.8 m/s²
Initial velocity (u) =?
u² = h/2g
u² = 148.23 / (2 × 9.8)
u² = 148.23 / 19.6
Take the square root of both side
u = √(148.23 / 19.6)
u = 2.75 m/s
The outside magnetic field of a solenoid is similar to that of a bar magnet even though the inside field is strong and uniform.