Atomic reaction is nothing but the reaction of one atom with the other atom to form the new compound.
<u>Explanation:</u>
- The atom is considered as the ultimate basic particle of the matter.
- This atom comprise of electron neutrons and protons.
- Generally in the atomic reaction, there will be loss or gain of the electron to or from the substance with which the reaction takes place.
- In default, all atoms wanted to attain the noble gas configuration which is stable in nature. These atoms from the ionic or covalent bond by sharing the electron.
<u />
Given that, an experiment to measure the enthalpy change for the reaction of aqueous copper(II) sulfate, CuSO4(aq) and zinc, Zn(s) was carried out in a coffee cup calorimeter; the heat of the reaction in the whole system is calculated to be 2218.34 kJ
Heat of reaction (i.e enthalpy of reaction) is the quantity of heat that is required to be added or removed when a chemical reaction is taken place in order to maintain all of the compounds present at the same temperature.
The formula used to calculate the heat of the reaction can be expressed as follows:
Q = mcΔT
where:
- Q = quantity of heat transfer
- m = mass
- c = specific heat of water = 4.18 kJ/g °C (constant)
- ΔT = change in temparature
From the information given:
- The initial temperature (T₁) = 25° C
- The final temperature (T₂) = 91.5° C
∴
The change in temperature i.e. ΔT = T₂ - T₁
ΔT = 91.5° C - 25° C
ΔT = 66.5° C
The number of moles of CuSO₄ = 1.00 mol/dm³ × 50.0 cm³

= 0.05 moles
- Since the molar mass of CuSO₄ = 159.609 g/mol
Then;
Using the relation:

By crossing multiplying;
mass of CuSO₄ = number of moles of CuSO₄ × molar mass of CuSO₄
mass of CuSO₄ = 0.05 moles × 159.609 g/moles
mass of CuSO₄ = 7.9805 grams
∴
Using the formula from above:
Q = mcΔT
Q = 7.9805 g × 4.18 kJ/g °C × 66.5° C
Q = 2218.34 kJ
Therefore, we can conclude that the heat of the reaction is 2218.34 kJ
Learn more about the chemical reaction here:
brainly.com/question/20250226?referrer=searchResults
Answer: Solution A : ![[H_3O^+]=0.300\times 10^{-7}M](https://tex.z-dn.net/?f=%5BH_3O%5E%2B%5D%3D0.300%5Ctimes%2010%5E%7B-7%7DM)
Solution B : ![[OH^-]=0.107\times 10^{-5}M](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D0.107%5Ctimes%2010%5E%7B-5%7DM)
Solution C : ![[OH^-]=0.177\times 10^{-10}M](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D0.177%5Ctimes%2010%5E%7B-10%7DM)
Explanation:
pH or pOH is the measure of acidity or alkalinity of a solution.
pH is calculated by taking negative logarithm of hydrogen ion concentration and pOH is calculated by taking negative logarithm of hydroxide ion concentration.

![[H_3O^+][OH^-]=10^{-14}](https://tex.z-dn.net/?f=%5BH_3O%5E%2B%5D%5BOH%5E-%5D%3D10%5E%7B-14%7D)
a. Solution A: ![[OH^-]=3.33\times 10^{-7}M](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D3.33%5Ctimes%2010%5E%7B-7%7DM)
![[H_3O^+]=\frac{10^{-14}}{3.33\times 10^{-7}}=0.300\times 10^{-7}M](https://tex.z-dn.net/?f=%5BH_3O%5E%2B%5D%3D%5Cfrac%7B10%5E%7B-14%7D%7D%7B3.33%5Ctimes%2010%5E%7B-7%7D%7D%3D0.300%5Ctimes%2010%5E%7B-7%7DM)
b. Solution B : ![[H_3O^+]=9.33\times 10^{-9}M](https://tex.z-dn.net/?f=%5BH_3O%5E%2B%5D%3D9.33%5Ctimes%2010%5E%7B-9%7DM)
![[OH^-]=\frac{10^{-14}}{9.33\times 10^{-9}}=0.107\times 10^{-5}M](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D%5Cfrac%7B10%5E%7B-14%7D%7D%7B9.33%5Ctimes%2010%5E%7B-9%7D%7D%3D0.107%5Ctimes%2010%5E%7B-5%7DM)
c. Solution C : ![[H_3O^+]=5.65\times 10^{-4}M](https://tex.z-dn.net/?f=%5BH_3O%5E%2B%5D%3D5.65%5Ctimes%2010%5E%7B-4%7DM)
![[OH^-]=\frac{10^{-14}}{5.65\times 10^{-4}}=0.177\times 10^{-10}M](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D%5Cfrac%7B10%5E%7B-14%7D%7D%7B5.65%5Ctimes%2010%5E%7B-4%7D%7D%3D0.177%5Ctimes%2010%5E%7B-10%7DM)
Explanation:
Electroplated jeweleries are in demand because firstly they are as shiny and attractive as real jeweleries, they are also light weighted and cost effective.