Volume of the tank is 5.5 litres.
Explanation:
mass of the CO2 is given 8.6 grams
Pressure of the gas is 89 Kilopascal which is 0.8762 atm
Temperature of the gas is 29 degrees ( 0 degrees +273.5= K) so (29+273)
R = gas constant 0.0821 liter atmosphere per kelvin)
FROM THE IDEAL GAS LAW
PV=nRT ( P Pressure, V Volume, n is number of moles of gas, R gas constant, Temperature in Kelvin)
no of moles = mass/atomic mass
= 8.6/44
= 0.195 moles
now putting the values in equation
V=nRT/P
= 0.195*0.0821*302/ 0.8762
= 5.5 litres.
As the carbon dioxide gas occupies the volume os the tank hence volume of tank is 5.5 litres.
Metals on the left side, metalloids on the staircase, nonmetals on right side
<u>Answer:</u> The chemical equations are written below.
<u>Explanation:</u>
<u>For a:</u> Methane reacts with oxygen gas to produce carbon dioxide and water.
Combustion reaction is defined as the reaction in which a hydrocarbon reacts with oxygen gas to produce carbon dioxide and water
The chemical equation for the combustion of methane follows:
- <u>For b:</u> Butane reacts with oxygen gas to produce carbon dioxide and water.
This is also an example of combustion reaction.
The chemical equation for the combustion of butane follows:
- <u>For c:</u> An aqueous solution of sulfuric acid reacts with aqueous potassium hydroxide to produce potassium sulfate and water.
When an acid reacts with a base, it leads to the formation of salt and water. This reaction is known as neutralization reaction
The chemical equation for the reaction of potassium hydroxide and sulfuric acid follows:
Hence, the chemical equations are written above.
I’m not sure if this is what you are referring to but there is something called a moles bridge which allows you to convert from one substance to another