Answer:
A particle
Explanation:
Modern quantum theory holds that light has both wave-like and particle-like properties. When the length scales involved are large compared to the wavelengths of light (ex., forming images with thin lenses), the
particle nature of light dominates.
The answer is c Yep Allll day
<h3>
Answer:</h3>
0.50 mol SiO₂
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
- Reading a Periodic Table
- Using Dimensional Analysis
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
30 g SiO₂ (sand)
<u>Step 2: Identify Conversions</u>
Molar Mass of Si - 28.09 g/mol
Molar Mass of O - 16.00 g/mol
Molar Mass of SiO₂ - 28.09 + 2(16.00) = 60.09 g/mol
<u>Step 3: Convert</u>
- Set up:

- Multiply/Divide:

<u>Step 4: Check</u>
<em>Follow sig figs and round. We are given 2 sig figs.</em>
0.499251 mol SiO₂ ≈ 0.50 mol SiO₂
<h2><u>
Answer:</u></h2>
(These are not rounded to the correct decimal)
130.94 atm
13,266.6 kPa
99,571.4 mmHg
<h2><u>
Explanation:</u></h2>
<u></u>
PV = nRT
V = 245L
P = ?
R = 0.08206 (atm) , 8.314 (kPa) , 62.4 (mmHg)
T = 273.15 + 27 = 300.15K
n = 1302.5 moles
How I found (n).
5.21kg x 1000g/1kg x 1 mole/4.0g = 1302.5 moles
Now, plug all the numbers into the equation.
Pressure in atm = (1302.5)(0.08206)(300.15) / 245 = 130.94 atm (not rounded to the correct decimal)
Pressure in kPa = (1302.5)(8.314)(300.15) / 245 = 13,266.6 kPa (not rounded to the correct decimal)
Pressure in mmHg = (1302.5)(62.4)(300.15) / 245 = 99,571.4 mmHg (not rounded to the correct decimal)
It is a Physical property because like water it changes into a ice cube but it can be melted into water or be turned back into an ice cube.