Answer:
Colors of transition metal compounds are due to two types of electronic transitions. Due to the presence of unpaired d electrons, transition metals can form paramagnetic compounds. Transition metals are conductors of electricity, possess high density and high melting and boiling points.
Explanation:
What exactly are you asking
"if it is tested in a controlled setting with repeated results" is the statement among the choices given in the question that best describes that can possibly make this scientific claim valid. The correct option among all the options that are given in the question is the first option or option "A". I hope the answer has helped you.<span>
</span>
Answer:
0.52 mol
Explanation:
Using the general gas equation formula:
PV = nRT
Where;
P = pressure (atm)
V = volume (Liters)
n = number of moles (mol)
R = gas law constant (0.0821 Latm/molK)
T = temperature (K)
At STP (standard temperature and pressure), temperature of a gas is 273K, while its pressure is 1 atm
Using PV = nRT
n = PV/RT
n = (1 × 11.74) ÷ (0.0821 × 273)
n = 11.74 ÷ 22.41
n = 0.52 mol
There are 0.52 moles in the basketball
Answer:
34.3 g NH3
Explanation:
M(H2) = 2*1 = 2 g/mol
M(N2) = 2*14 = 28 g/mol
M(NH3) = 14 + 3*1 = 17 g/mol
23.6 g H2* 1 mol/2 g = 11.8 mol H2
28.3 g N2 * 1 mol/28 g = 1.01 mol N2
3H2 + N2 ------> 2NH3
from reaction 3 mol 1 mol
given 11.8 mol 1.01 mol
We can see that H2 is given in excess, N2 is limiting reactant.
3H2 + N2 ------> 2NH3
from reaction 1 mol 2 mol
given 1.01 mol x
x = 2*1.01/1= 2.02 mol NH3
2.02 mol * 17g/1 mol ≈ 34.3 g NH3