Answer:
34,6g of (NH₄)₂SO₄
Explanation:
The boiling-point elevation describes the phenomenon in which the boiling point of a liquid increases with the addition of a compound. The formula is:
ΔT = kb×m
Where ΔT is Tsolution - T solvent; kb is ebullioscopic constant and m is molality of ions in solution.
For the problem:
ΔT = 109,7°C-108,3°C = 1,4°C
kb = 1.07 °C kg/mol
Solving:
m = 1,31 mol/kg
As mass of X = 600g = 0,600kg:
1,31mol/kg×0,600kg = 0,785 moles of ions. As (NH₄)₂SO₄ has three ions:
0,785 moles of ions×
= 0,262 moles of (NH₄)₂SO₄
As molar mass of (NH₄)₂SO₄ is 132,14g/mol:
0,262 moles of (NH₄)₂SO₄×
= <em>34,6g of (NH₄)₂SO₄</em>
<em></em>
I hope it helps!
Answer:
n = 7.86 mol
Explanation:
This question can be solved using the ideal gas law of PV = nRT.
Temperature must be in K, so we will convert 22.5C to 295 K ( Kelvin = C + 273).
R is the ideal gas constant of 0.0821.
(2.24atm)(85.0L) = n(0.0821)(295K)
Isolate n to get:
n = (2.24atm)(85.0L)/(0.0821)(295K)
n = 7.86 mol
Ammonia is the base out of the 4
Energy
It travels in the form of energy waves
Well if you were asking it was a true or false questions the answer is: True