The hybrid orbital of this molecule is
. Hence, option C is correct.
<h3>What is hybridisation?</h3>
Hybridization is defined as the concept of mixing two atomic orbitals to give rise to a new type of hybridized orbitals.
In this compound,
a hybrid orbital makes I-O bonds. Due to
hybridization iodate should have tetrahedral geometry but because of the presence of lone pair of electrons the shape of
the ion is pyramidal.
The hybrid orbital of this molecule is
. Hence, option C is correct.
Learn more about hybridisation here:
brainly.com/question/23038117
#SPJ1
Explanation:
Relation between pressure, latent heat of fusion, and change in volume is as follows.

Also, 
where,
is the difference in specific volumes.
Hence, 
As,
= 22.0 J/mol K
And,
...... (1)
where,
= density of water
= density of ice
M = molar mass of water =
Therefore, using formula in equation (1) we will calculate the volume of fusion as follows.
=
=
Therefore, calculate the required pressure as follows.

=
or, = 145 bar/K
Hence, for change of 1 degree pressure the decrease is 145 bar and for 4.7 degree change dP =
= 681.5 bar
Thus, we can conclude that pressure should be increased by 681.5 bar to cause 4.7 degree change in melting point.
I’m so sorry i have to do this 5L 24
Answer:
4 g OF IODINE-131 WILL REMAIN AFTER 32 DAYS.
Explanation:
Half life (t1/2) = 8 days
Original mass (No) = 64 g
Elapsed time (t) = 32 days
Mass remaining (Nt) = ?
Using the half life equation we can obtain the mass remaining (Nt)
Nt = No (1/2) ^t/t1/2
Substituting the values, we have;
Nt = 64 * ( 1/2 ) ^32/8
Nt = 64 * (1/2) ^4
Nt = 64 * 0.0625
Nt = 4 g
So therefore, 4 g of the iodine-131 sample will remain after 32 days with its half life of 8 days.
Atomic mass Carbon (C ) = 12.01 a.m.u
12.01 g ---------- 6.02x10²³ atoms
1.50 g ----------- ??
1.50 x ( 6.02x10²³ ) / 12.01 =
7.51x10²² atoms of C
hope this helps!