Answer:
uhh
Explanation:
Wegener found similar evidence when he discovered tropical plant fossils in the frozen region of the Arctic Circle. As Wegener collected more data, he realized the explanation that best fit all the climate, rock, and fossil observations involved moving continents.
I always remembered the differences by Mitosis sounds like My Toes Is. Which means its body cells reproducing.
And Meiosis is My overies. Which is sex cells reproducing.
Mitosis - The body cell's nucleus makes a copy of its chromosomes. The Chromotids are then pulled to the poles of the cell and split in half, the cell then divides in half into two new cells. Each cell has one pair of chromosomes each.
Meiosis - The sex cells nucleus makes a copy of each chromosome same as before. But then the similar chromosomes group up and swap parts with each other. Making completely new chromosomes. They then split in half again, making two new cells with two different pairs of chromosomes. Which then split apart Once more creating 4 new cells (From the original one) Each with completely random chromosomes.
<span>4.999999999999999e</span>+<span>24 this is what i got on the calculator but i dont know if its right.</span>
the answer would be B) Moon
Answer:
Explanation:
In this case we want to know the structures of A (C6H12), B (C6H13Br) and C (C6H14).
A and C reacts with two differents reagents and conditions, however both of them gives the same product.
Let's analyze each reaction.
First, C6H12 has the general formula of an alkene or cycloalkane. However, when we look at the reagents, which are HBr in ROOR, and the final product, we can see that this is an adition reaction where the H and Br were added to a molecule, therefore we can conclude that the initial reactant is an alkene. Now, what happens next? A is reacting with HBr. In general terms when we have an adition of a molecule to a reactant like HBr (Adding electrophyle and nucleophyle) this kind of reactions follows the markonikov's rule that states that the hydrogen will go to the carbon with more hydrogens, and the nucleophyle will go to the carbon with less hydrogen (Atom that can be stabilized with charge). But in this case, we have something else and is the use of the ROOR, this is a peroxide so, instead of follow the markonikov rule, it will do the opposite, the hydrogen to the more substituted carbon and the bromine to the carbon with more hydrogens. This is called the antimarkonikov rule. Picture attached show the possible structure for A. The alkene would have to be the 1-hexene.
Now in the second case we have C, reacting with bromine in light to give also B. C has the formula C6H14 which is the formula for an alkane and once again we are having an adition reaction. In this case, conditions are given to do an adition reaction in an alkane. bromine in presence of light promoves the adition of the bromine to the molecule of alkane. In this case it can go to the carbon with more hydrogen or less hydrogens, but it will prefer the carbon with more hydrogens. In this case would be the terminal hydrogens of the molecules. In this case, it will form product B again. the alkane here would be the hexane. See picture for structures.