The balanced equation for the reaction is as follows
2H₂ + O₂ --> 2H₂O
stoichiometry of H₂ to O₂ is 2:1
number of H₂ moles - 30.0 g / 2 g/mol = 15 mol
number of O₂ moles - 80.0 g / 32 g/mol = 2.5 mol
limiting reactant is the reagent in which only a fraction is used up in the reaction
if H₂ is the limiting reactant
if 2 mol of H₂ requires 1 mol of O₂
then 15 mol of H₂ requires 1/2 x 15.0 = 7.5 mol of O₂
but only 2.5 mol of O₂ is required
this means that O₂ is the limiting reagentt and H₂ is in excess
Electrons are added to the same principal energy level.
Hello! Let me try to answer this :)
Thanks and please correct if there are any mistakes ^ ^
Thus BeF2 is of most covalent character.
Anyways, covalent/ionic character is a bit tricky to figure out; we measure the difference in electronegativity of two elements bonding together and we use the following rule of thumb: if the charge is 0 (or a little more), the bond is non-polar covalent; if the charge is > 0 but < 2.0 (some references say 1.7), the bond is polar covalent; if the charge is > 2.0 then the bond is ionic. Covalent character refers to smaller electronegativity difference while ionic character refers to greater electronegativity difference.
Now, notice all of our bonds are with F, fluorine, which has the highest electronegativity of 3.98. This means that to determine character we need to consider the electronegativities of the other elements -- whichever has the greatest electronegativity has the least difference and most covalent character.
Na, sodium, has electronegativity of 0.93, so our difference is ~3 -- meaning our bond is ionic. Ca, calcium, has 1.00, leaving our difference to again be ~3 and therefore the bond is ionic. Be, beryllium, has 1.57 yielding a difference of ~2.5, meaning we're still dealing with ionic bond. Cs, cesium, has 0.79, meaning our difference is again ~3 and therefore again our compound is of ionic bond. Lastly, we have Sr, strontium, with an electronegativity of 0.95 and therefore again a difference of roughly 3 and an ionic bond.
<span>
</span>
Predators? I just looked it up lol