For the absorbance of the solution in a 1.00 cm cell at 500 nm is mathematically given as
A’ = 0.16138
<h3>What is the absorbance of the solution in a 1.00 cm cell at 500 nm?</h3>
Absorbance (A) 2 – log (%T) = 2 – log (15.6) = 0.8069
Generally, the equation for the Beer’s law is mathematically given as
A = ε*c*l
0.8069 = ε*c*(5.00 )
ε*c = 0.16138 cm-1
then for when ε*c is constant
l’ = 1.00
A’ = (0.16138 cm-1)*(1.00 cm)
A’ = 0.16138
In conclusion, the absorbance of the solution in a 1.00 cm cell at 500 nm is
A’ = 0.16138
Read more about Wavelength
brainly.com/question/3004869
The answer to this is letter D.
Chromium's electron configuration is <span>1s2 2s2 2p6 3s2 3p6 3d5 4s1, where the last electron is in the s orbital with only 1. As for Li, it is found in the group 1 metals, and it is a fact that all elements under this group has the their last electron to be in the s orbital with only one electron in their outermost shell.
</span>The electron configuration<span> associated with the lowest energy level of the atom is referred to as </span>ground state and each electron ion is in the lowest energy level possible. When the moment comes that electrons go into a higher level of energy, that is what we call the excited state.
State the order in which the ions associated with a compound composed of potassium and bromine would be written in the chemical formula and the compound name.
Answer:
Convergent Plate Boundaries
Explanation:
I hope this helps :)
So I think that this is very cool elsewhere think that it’s also a little bit cool so you’re selling birthday OK the pressure is definitely 25 and the 2 L so basically the answer is five so everything is great that’s the answer