<em>answer:</em><em> </em><em>option </em><em>d </em><em>(</em><em>2</em><em>×</em><em>m</em><em>o</em><em>l</em><em>a</em><em>r</em><em> </em><em>mass </em><em>of </em><em>H </em><em>+</em><em>2</em><em>×</em><em>m</em><em>o</em><em>l</em><em>a</em><em>r</em><em> </em><em>mass </em><em>of </em><em>O</em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em>
When the thermal energy of the air around a fire is transferred to the surrounding air A. The thermal energy is spread out by the surrounding air.
Thermal energy transfers occur in 3 approaches conduction, convection, and radiation. whilst thermal power is transferred among neighboring molecules that are in touch with each other, which is referred to as conduction.
Thermal strength refers to the power contained inside a system that is liable for its temperature. heat is the go with the flow of thermal electricity. an entire department of physics, thermodynamics, offers how heat is transferred among exceptional systems and how work is accomplished in the manner.
Thermal strength also referred to as heat strength is produced when a rise in temperature reasons atoms and molecules to transport quicker and collide with each other. The energy that comes from the temperature of the heated substance is referred to as thermal strength.
Learn more about Thermal energy here:-brainly.com/question/19666326
#SPJ9
Answer:
d. the conjugate base of the weak acid
Explanation:
The strong base (BOH) is completely dissociated in water:
BOH → B⁺ + OH⁻
The resulting conjugate acid (OH⁻) is a weak acid, so it remains in solution as OH⁻ ions.
By other hand, the weak acid (HA) is only slightly dissociated in water:
HA ⇄ H⁺ + A⁻
The resulting conjugate base (A⁻) is a weak base. Thus, it reacts with H⁺ ions from water to form HA, increasing the concentration of OH⁻ ions in the solution.
Therefore, the resulting solution will have a pH > 7 (basic).
Answer:
The photosynthesis process is interrupted.
Explanation:
Algae produce energy using the photosynthesis process. The reduction of 3-phosphoglycerate to glyceraldehyde 3-phosphate is part of this process. Despite this reduction reaction being light-independent (Calvin Cycle), the precursors of this reaction are synthesized in light-dependent steps.
This is the reason why the reduction is blocked when the algae is placed in the dark.