Answer:
dgdhvjgfjfdcdrtdgxbhjcdtsdhcbgtdytfgiuftrshdryrgbiuwdbcuhdds
Explanation:
,ajsgfgsdfubcygduhdsbcdshyudbckjdshfyendhdndbhfdbuehundweugdjnbfcjdfhewjdnbewqwioehsajcnbsfhhgjhbgjhhbjdhgwbvdwnjjguhbwqhjbsjwqhshwbdjagdasndhsajuwqbdjasnjashdjaskxnjgjjsklx ms,dhwshjksnjdbhjssnj,
So you subtract the numbers that are on the same axis. So if your gravitational force is 10 and your normal force is 5 you do 5-10 to get -5 since gravity acts downward
Answer:
DETAILS IN THE QUESTION INSUFFICIENT TO ANSWER
Explanation:
Assuming the liquid to be water ,
the density
of water is :
Buoyant force exerted by a liquid on an object with
of it's volume immersed is :

where ,
is the buoyant force
is the density of the liquid
is the acceleration due to gravity
Thus at equilibrium:

from these , we get the density of brass to be 
which is not possible
Linear expansivity is a type of thermal expansion. It is described by a fraction that represents the fractional increase in length of a thin beam of a material exposed to a temperature increase of one degree Celsius. ... Linear expansivity is used in many real world applications.
The increase in the average kinetic energy of the ball causes the increase in the temperature of the ball.
Kinetic energy of a particle is directly proportional to its temperature.
A ball initially at rest acquires kinetic energy when an external force is applied to it. As the person strikes the ball with a bat, the ball gains momentum which increases its kinetic energy of the ball.
Temperature on the other hand, is the measure of the average kinetic energy of a particle. Consequently, as the kinetic energy of the ball increases, the temperature of the ball increases as well.
Thus, we can conclude that the increase in the average kinetic energy of the ball causes the increase in the temperature of the ball.
Learn more here: brainly.com/question/18833622