Answer: D, hydrolysis
Hydrolysis is any chemical reaction in which a molecule of water ruptures one or more chemical bonds. The term is used broadly for substitution, elimination, and fragmentation reactions in which water is the nucleophile.
Answer:
V = 12.93 L
Explanation:
Given data:
Number of moles = 0.785 mol
Pressure of balloon = 1.5 atm
Temperature = 301 K
Volume of balloon = ?
Solution:
The given problem will be solve by using general gas equation,
PV = nRT
P= Pressure
V = volume
n = number of moles
R = general gas constant = 0.0821 atm.L/ mol.K
T = temperature in kelvin
Now we will put the values.
V = nRT/P
V = 0.785 mol × 0.0821 atm.L/ mol.K × 301 K / 1.5 atm
V = 19.4 L /1.5
V = 12.93 L
Answer:
volume is 7.0 liters
Explanation:
We are given;
- Molarity of the aqueous solution as 2.0 M
- Moles of the solute, K₂S as 14 moles
We are required to determine the volume of the solution;
We need to know that;
Molarity = Moles ÷ volume
Therefore;
Volume = Moles ÷ Molarity
Thus;
Volume of the solution = 14 moles ÷ 2.0 M
= 7.0 L
Hence, the volume of the molar solution is 7.0 L
Calculate the mass of the solute <span>in the solution :
Molar mass KCl = </span><span>74.55 g/mol
m = Molarity * molar mass * volume
m = 0.9 * 74.55 * 3.5
m = 234.8325 g
</span><span>To prepare 0.9 M KCl solution, weigh 234.8325 g of salt in an analytical balance, dissolve in a beaker, shortly after transfer with the help of a funnel of transfer to a volumetric flask of 100 cm</span>³<span> and complete with water up to the mark, then cover the balloon and finally shake the solution to mix
hope this helps!</span>
Answer:
The density is 5 g/cm3
Explanation:
The density (δ) is the ratio between the mass and the volume of a compound:
δ=m/v= 10 g/2 cm3= 5 g/cm3