Since in this case we are
only using the variance of the sample and not the variance of the real population,
therefore we use the t statistic. The formula for the confidence interval is:
<span>CI = X ± t * s / sqrt(n) ---> 1</span>
Where,
X = the sample mean = 84
t = the t score which is
obtained in the standard distribution tables at 95% confidence level
s = sample variance = 12.25
n = number of samples = 49
From the table at 95%
confidence interval and degrees of freedom of 48 (DOF = n -1), the value of t
is around:
t = 1.68
Therefore substituting the
given values to equation 1:
CI = 84 ± 1.68 * 12.25 /
sqrt(49)
CI = 84 ± 2.94
CI = 81.06, 86.94
<span>Therefore at 95% confidence
level, the scores is from 81 to 87.</span>
A convex polygon
Hope this helps :)
Answer: 0.951%
Explanation:Note that in the problem, the scenario is either the adult is using or not using smartphones. So, we have a yes or no scenario involved with the random variable, which is the number of adults using smartphones. Thus, the number of adults using smartphones follows the binomial distribution.
Let x be the number of adults using smartphones and n be the number of randomly selected adults. In Binomial distribution, the probability that there are k adults using smartphones is given by

Where p = probability that an adult is using smartphones = 54% (since 54% of adults are using smartphones).
Since n = 12 and k = 3, the probability that fewer than 3 are using smartphones is given by

Therefore, the probability that there are fewer than 3 adults are using smartphone is 0.00951 or
0.951%.
4 ft 6 in
3 ft 9 in
4 ft 11 in
-------------add
11 ft 26 in
there are 12 inches in 1 ft.....so 26 inches = (26/12) = 2 ft 2 inches
11 ft + 2 ft 2 in = 13 ft 2 in <===