It is the gravitational force pulling on something
Oxygen gas produced : 0.7 g
<h3>Further explanation</h3>
Given
10.0 grams HgO
9.3 grams Hg
Required
Oxygen gas produced
Solution
Reaction⇒Decomposition
2HgO(s)⇒2Hg(l)+O₂(g)
Conservation of mass applies to a closed system, where the masses before and after the reaction are the same
mass of reactants = mass of products
mass HgO = mass Hg + mass O₂
10 g = 9.3 g + mass O₂
mass O₂ = 0.7 g
The question has missing information, the complete question is:
Cobalt(II) chloride forms several hydrates with the general formula CoCl₂.xH₂O, where x is an integer. If the hydrate is heated, the water can be driven off, leaving pure CoCl₂ behind. Suppose a sample of a certain hydrate is heated until all the water is removed, and it's found that the mass of the sample decreases by 22.0%. Which hydrate is it? That is, what is x?
Answer:
CoCl₂.26H₂O
Explanation:
The molar masses of the compounds that forms the hydrate are:
Co = 59 g/mol
Cl = 35.5 g/mol
H = 1 g/mol
O = 16 g/mol
The molar mass of CoCl₂ is 130 g/mol and of H₂O is 18 g/mol, thus for the hydrate, it will be 130 + 18x g/mol.
Let's suppose 1 mol of the compound. Thus, the mass of the hydrate is: 130 + 18x, and the mass of CoCl₂ will be 130 g. Because the mass decreassed by 22.0% :
0.22*(130 + 18x) = 130
130 + 18x = 590.91
18x = 460.91
x ≅ 26
Thus, the hydrate is CoCl₂.26H₂O
Electrons in sigma <span>bonds remain localized between two atoms. Sigma </span><span>bond results from the formation of </span><span>a molecular orbital </span><span>by the end to </span><span>end overlap of atomic </span>orbitals. Electrons<span> in pi</span> bonds can become delocalized between more than two atoms. Pi bonds result from the formation of molecular orbital by side to side overlap of atomic orbitals.
<span> </span>
Answer: No
Explanation:
- Law of definite proportions is a case from the Law of conservation of energy (matter) which states that "mass can neither be created nor destroyed, but changed from one form to another."
- Adding coefficients to a chemical equation confirms that there is the same number of atoms on both sides of a reaction; therefore, matter has not been created or destroyed but reorganized to give new substrates.
Example : 2 Mg + O2 → 2 MgO
In the balanced equation above, 2 moles of Mg reacts with 1 mole of O2 to produce 2 moles of MgO.
mass of 2 moles of Mg = 24×2= 48 grams
mass of 1 mole of O2 = 16+16 = 32 grams
total mass of reactants = 48 + 32 = 80 grams
mass of 2 moles of MgO = (24+16) ×2 = 80 grams
total mass of products = 80 grams
It is clear that the number of grams of matter before and after the reaction is the same and equals to 80 grams, so obeys the law of definite proportions..