Answer:
D
Explanation:
A weak acid and a strong base will form a basic salt.
Option A is acidic, this pH would be found in salts formed from reactions between strong acids and weak bases.
B and C are neutral or close to neutral and as such will be formed from weak acids and weak bases, or strong acids and strong bases.
Answer: 37.6 atm
Explanation:
Given that,
Initial volume of gas (V1) = 19L
Initial pressure of gas (P1) = 9.5 atm
Final volume of gas (V2) = 4.8L
Final pressure of gas (P2) = ?
Since pressure and volume are given while temperature remains the same, apply the formula for Boyle's law
P1V1 = P2V2
9.5 atm x 19L = P2 x 4.8L
180.5 atm•L = 4.8L•P2
Divide both sides by 4.8L
180.5 atm•L/4.8L = 4.8L•P2/4.8L
37.6 atm = P2
Thus, the final pressure is 37.6 atmospheres.
Answer:
- <u><em>Magnesium and fluorine.</em></u>
Explanation:
<em>Ionic compounds</em> are formed by the electrostatic attraction of cations and anions.
Cations, positive ions, are formed when atoms lose electrons, and anions, negative ions, are formed when atoms gain electrons.
When two different atoms have similar atraction for electrons (electronegativity) they will not donate to nor catch electrons from each other, so cations and anions will not be formed. Instead, the atoms would prefer to share electrons forming covalent bonds to complete their outermost shell (octet rule).
Then, in order to form ionic compounds the electronegativities have to substantially different. This situation does not happen between two nonmetal elements, which nitrogen and sulfur are. Then, you can predict safely that nitrogen and sulfur will not form an ionic compound.
Ionic compounds, then require the electronegativity difference that exist between some metals and nonmetals. Being magnesium an alkaline earth metal, its electronegativity is very low. On the other hand, fluorine the first element of the group 17, has the highest electronegativity of all the elements.Thus magnesium and fluorine will have enough electronegativity difference to justify the exchange of electrons, forming ions and, consequently, ionic compounds.
the results from the breakdown of proteins and amino acids causing a foul smell